
Effect Sizes, Power Analysis and 

Statistical Decisions

• Effect sizes -- what and why??

• review of statistical decisions and statistical decision errors

• statistical power and power analysis

• a priori & post hoc power analyses for r, F & X2

• Statistical Decision errors -- risk of Type I, II  III errors

Effect Size and Statistical Significance - two useful pieces of info

Statistical Significance Test (Summary) Statistic (t, F and χ²)

• used primarily as an intermediate step to obtain the p-value for 
the statistical decision 

• the p-value is used to decide ”whether or not there is an effect”

Effect size refers to 

• the strength or magnitude of the relationship between the
variables in the population.

• the extent of departure from the H0: (no relationship) 

Their relationship

Significance Test Stat =  Effect Size *     Size of Study

Effect Size = Significance Test Stat /     Size of Study

When we use correlation, r is both a summary statistic for a 

significance test and an effect size estimate.

• Significance test -- For any given N, df = N-2, and we can look 

up the critical-r value & decide to retain or reject H0: 

• Effect size estimate -- the larger r is (+ or -),  the stronger the 

relationship between the variables in the population 

-- with practice we get very good at deciding whether r

is “small” (r = .10), “medium” (.30) or  “large” (.50)

• We can use r to compare the findings of different studies even 

when they don’t use exactly the same variables (but they

have to be “comparable”)

• DSC (Dep Sym Cklst) & age -- BDI (Beck Dep Inv) & age

• # practices & % correct -- practice time in minutes & # correct

• We will also use effect sizes to perform power analyses (later)



But what if we want to compare the results from studies that used 
different “comparable” DVs or different sample sizes in ANOVAs?

• Hard to compare mean differences from studies w/ different DVs

• We know we can only compare F-values of studies that have 
the same sample sizes (Test Stat =  Effect Size * Size of Study)

Unless of course, we had some generalized “effect size measure” 

that could be computed from ANOVAs using different DVs & Ns…

We do ... our old buddy r, which can be computed from F 

r = √ F / (F + dferror)

By the way, when used this way “r” is sometimes called η (eta).

Now we can summarize and compare the effect sizes of different studies.
Here’s an example using two versions of a study using ANOVA...

Researcher #1 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours & 
count the number of times each machine 
failed and was re-booted.

Researcher #2 Acquired 30 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours & 
measured the time each computer was 
running.

Mean failures PC = 5.7

Mean failures Mac = 3.6

F(1,38) = 10.26, p = .003

√ F / (F + df) = √ 10.26 / (10.26+38)

r = .46

So, we see that these two studies found very similar results –
similar  effect direction  (Macs better) & effect size !!

√ F / (F + df)   = √ 18.43 / (18.43+58)
r = .49

Mean up time PC = 22.89

Mean up time Mac = 23.48

F(1,58) = 18.43, p = .001

What about if we want to compare results from studies that used 
different “comparable” variables or  different sample sizes in Χ² ?

• Hard to compare frequency differences from studies w/ different
DVs or different sample sizes

• We know we can only compare Χ² -values of studies that have 
the same sample sizes (Test Stat =  Effect Size * Size of Study)

Unless of course, we had some generalized “effect size measure” 

that could be computed from Χ² s using different DVs & Ns…

We do ... our old buddy r, which can be computed from F 

r = √ Χ² / N

By the way, when used this way “r” is sometimes called η (eta).



Now we can summarize and compare the effect sizes of different studies. 
Here’s an example using two versions of a study using X2...

Researcher #1 Acquired 40 computers of 
each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours or until 
the statistical software froze.

Researcher #2 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours or until 
the graphic editing software froze.

So, by computing effect sizes, we see that while both studies that 
Macs did better, the difference was far larger for graphic software 
than for statistical software.
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X2(1) = 8.12, p =.003

√ Χ² / N     =    √8.12 / 40

r = .45
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X2(1) = 5.54, p =.03

√ Χ² / N     =    √5.54 / 80

r = .26

What about if we want to compare results from studies if one 
happened to use a quantitative outcome variable and the other 
used a “comparable” qualitative outcome variable?

We know we can’t only F & Χ² -values from different studies, 
especially if they have different sample sizes (Test Stat =  Effect Size 
* Size of Study)

Unless of course, we had some generalized “effect size measure” 

that could be computed from both F and Χ² s using different DVs 

& Ns…

We do ... our old buddy r, which can be computed from F & X2

r = √ F / (F + dferror) r = √ Χ² / N

Now we can summarize and compare the effect sizes of different studies.

Here’s an example using two versions of a study we discussed last time...

Researcher #1 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours & 
count the number of times each machine 
failed and was re-booted.

Researcher #2 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours or until 
it failed.

Mean failures PC = 5.7, std = 2.1

Mean failures Mac = 3.6, std = 2.1

F(1,38) = 10.26, p = .003
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X2(1) = 8.12, p <.003

√ F / (F + df) = √ 10.26 / (10.26+38)

r = .46

√ Χ² / N     =    √8.12 / 40

r = .45

So, by computing effect sizes, we see that these two studies 

found very similar results, in terms of direction and effect size !!



Just a bit of review before discussing Power analysis …

Statistical Power (also called sensitivity) is about the ability to 

reject H0: based on the sample data when there REALLY

IS a correlation between the variables in the population

In the population  (Truth)  …
Relationship No Relationship

Statistical Decision

Reject H0: decide 
there’s a relationship

Retain H0: decide 

there’s no relationship

Good decision

Good decision

Type I error

Type II error

When we have high power

When we have low power

Statistical Power is increased by…

• larger effect (i.e., larger r between the variables)

• larger sample size

Statistical Power

• The ability to Reject H0: based on the sample data when there 

really is a correlation between the variables in the population

• Statistical Power is primarily about the sample size needed to 

detect an “r” of a certain size with how much confidence !!

• Statistical Power tell the probability of rejecting H0:, when it 

should be rejected.

• We’ll use a “power table” for two kinds of Power Analyses

– a priori power analyses are used to tell the what the sample 

size should be to find a correlation of a specified size

– post hoc power analyses are used when you have retained 

H0:, and want to know the probability that you have 

committed a Type II error (to help you decide whether or not 

you “believe” the null result).

But first -- a few important things…

• Power analysis is about Type II errors, “missed effects” 

“retaining H0: when there really is a relationship in the population!!

• “Power” is the antithesis of  “risk of Type II error”

• Risk of Type II error = 1 - power

• Power = 1 - Risk of Type II error

match up the following...

40% chance of Type II error

power = .40

.30 risk of missing an effect

30% power

Type II error risk = .60

.70 chance of missing effect

60% Power

70% chance to find effect



a priori Power Analyses -- r

You want to be able to reject H0: if r is as large as .30

• pick the power you want 
– probability of rejecting H0: if there is a relationship between the variables 

in the population (H0: is wrong)

– .80 is “standard” -- 80% confidence will reject H0: if there’s 
an effect

• go to the table

– look at the column labeled  .30 (r = .30)
– look at the row labeled .80 ( power = .80)

– you would want S = 82

• What about… necessary sample size (S)

– r = .40 with power = .90 ???

– r = .15 with power = .80 ???

– r = .20 with power = .70 ???

The catch here is that you need some idea of what size correlation you are 
looking for!!!  Lit review, pilot study, or “small-medium-large” are the usual 
solutions -- but you must start a priori analyses with an expected r !!!

post hoc Power Analyses -- r

You obtained r(30)=.30, p > .05, and decided to retain H0:

• What is the chance that you have committed a Type II error ??? 

• Compute S = df + 2  = 30 + 2 = 32

• go to the table

– look at the column labeled  r = .30

– look down that column for S = 32  24/33

– read the power from the left-most column (.30-.40)

• Conclusion?
– power of this analysis was .30-.40

– probability that this decision was a Type II error (the 
probability we missed an effect that really exists in the 
population)                = 1 - power = 60-70%

– NOT GOOD !! If we retain H0: there’s a 60-70% chance 
we’re wrong and there really is a relationship between the 
variables I the population We shouldn’t trust this H0: result !!

Thinking about Effect Sizes, Power Analyses & 

Significance Testing with Pearson’s Correlation

• Dr.  Yep correlates the # hours students studied for the exam with % 

correct on that exam and found r(48) = .30, p. < .05).

• Dr. Nope “checks-up” on this by re-running the study with N=20 

finding a linear relationship in the same direction as was found by 

Dr. Yep, but with r(18) = .30, p > .05).

What’s up with that ???

Consider the correlations (effect sizes) …  .30 = .30

But, consider the power for each  

Dr. Yep  -- we know we have “enough power”, we rejected H0:

Dr. Nope  -- r = .30 with S = 20,  power is < .30, so more than a 

70% chance of a Type II error

Same correlational value in both studies -- but different H0: conclusions 
because of very different amounts of power (sample size).



Power analysis with r is simple, because 

• r is the “standard” effect size estimate used for all the tests 

• the table uses r

• when working with F and X2 we have to “detour” through r to 

get the effect sizes needed to perform our power analyses

• here are the formulas again

r = √ F / (F + dferror)       and             r = √ Χ² /  N 

• as with r, with F and X2

• we have a priori and post how power analyses

• for a priori analyses we need a starting estimate of the size of 

the effect we are looking for

Power Analyses - F -- your turn

You obtained F(1,18) = 2.00, p > .05, and decided to retain H0:.  What 
is the chance that you have committed a Type II error ??? 

• Compute r = 

• Compute S =

• go to the table

– what column do we look at ? 

– What value in column is closest to “S”

– read the power from the left-most column

• Conclusion?

Power _____, so there is greater than ____ chance that 

this decision was a Type II error -- _________________

To replicate this study with only a 10% risk of missing an 

effect you’d need a sample size of ...

Power Analyses  -- X2

You get X2(1) = 3.00, p > .05 based on N=45, and decided to retain H0:

• What is the chance that you have committed a Type II error ??? 

• Compute r = √ X2 /  N = √ 3 / 45 = .26

• Compute S = N = 45
• go to the table

– look at the column labeled  .25 (rounding down)
– look down that column for S = 45  34/47
– read the power from the left-most column (.30-.40)

• Conclusion?
– power of this analysis was .30-.40
– probability that this decision was a Type II error (the probability 

we missed an effect that really exists in the population) = 1 - power 
= 60-70% -- NOT GOOD !! We won’t trust this H0: result !!

What if you plann to replicate this study -- what sample size would you 

want to have power = .80?  What would be your risk of Type II error?

S = Type II error Risk = 82 - 41 in each cond. 20%



Now we can take a more complete look at types of statistical 

decision errors and the probability of making them ...

In the Population

H0: True                           H0: False
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Correctly Retained H0:

Correctly Rejected H0:Incorrectly Rejected H0:

Type I  error

Incorrectly Retained H0:

Type II  error

Probability  =   α Probability  =  1 - β

Probability  =  βProbability  = 1 - α

How this all works …

Complete stat analysis and check the p-value

If reject H0: …

- Type I & Type III errors 

possible

• p = probability of Type I 

error

• Prob. of Type III error not 

estimable

• MUST have had enough 

power (rejected H0: !)

If retain H0:

1. Need to determine prob. 

of Type II error
• Compute effect size  r
• Compute S
• Determine power
• Type II error = 1 - power 

2.  Likely to decide there’s a 
power problem -- unless 
the effect size is so small 
that even if significant it 
would not be “interesting”

Let’s learn how to apply these probabilities !!

Imagine you’ve obtained     r(58) = .25, p = .05

If I decide to reject H0:, what’s the chance 
I’m committing a Type I error ?

If I decide to reject H0:, what’s the chance 
I’m committing a Type III error ? 

If I decide to reject H0:, what’s the 
chance I’m committing a Type II error ?

This is α (or p)  = 5%

0% -- Can’t possibly commit 
a Type II error when you 
reject H0:

This is 1 - power (for r =.25, 
N=60, power = .5) so a 50%
chance of a Type II error

0% -- Can’t commit a Type I 
error when you retain H0:

If I decide to retain H0:, what’s my chance 

of committing a Type I error ?

If I decide to retain H0:, what’s my chance 

of committing a Type III error ?

If I decide to retain H0:, what’s the 

chance I’m committing a Type II error ?

“not estimable”

0% -- Can’t commit a Type III 
error when you retain H0:


