Effect Sizes, Power Analysis and Statistical Decisions	 Effect Size and Statistical Significance - two useful pieces of info Statistical Significance Test (Summary) Statistic (t, F and χ²) used primarily as an intermediate step to obtain the p-value for the statistical decision the p-value is used to decide "whether or not there is an effect"
 Effect sizes what and why?? review of statistical decisions and statistical decision errors statistical power and power analysis <i>a priori</i> & <i>post hoc</i> power analyses for r, F & X² Statistical Decision errors risk of Type I, II III errors 	Effect size refers to • the strength or magnitude of the relationship between the variables in the population. • the extent of departure from the H0: (no relationship) Their relationship Significance Test Stat = Effect Size * Size of Study Effect Size = Significance Test Stat / Size of Study
When we use correlation, \mathbf{I} is both a summary statistic for a significance test and an effect size estimate.	
 Significance test For any given N, df = N-2, and we can look up the critical-r value & decide to retain or reject H0: 	
 Effect size estimate the larger I is (+ or -), the stronger the relationship between the variables in the population with practice we get very good at deciding whether I is "small" (r = .10), "medium" (.30) or "large" (.50) 	
 We can use r to compare the findings of different studies even when they don't use exactly the same variables (but they have to be "comparable") DSC (Dep Sym Cklst) & age BDI (Beck Dep Inv) & age # practices & % correct practice time in minutes & # correct We will also use effect sizes to perform power analyses (later) 	

But what if we want to compare the results from studies that used different "comparable" DVs or different sample sizes in ANOVAs?

- Hard to compare mean difference
- We know we can only compare the same sample sizes (Te

Unless of course, we had some g that could be computed from ANC We do ... our old buddy **I**, which

 $\mathbf{I} = \sqrt{\mathbf{F}/(\mathbf{F} + \mathbf{d})}$

By the way, when used this way "r"

What about if we want to compare different "comparable" variables o

- · Hard to compare frequency diffe DVs or different sample size
- · We know we can only compare the same sample sizes (Te

Unless of course, we had some g that could be computed from X² s We do ... our old buddy **I**, which

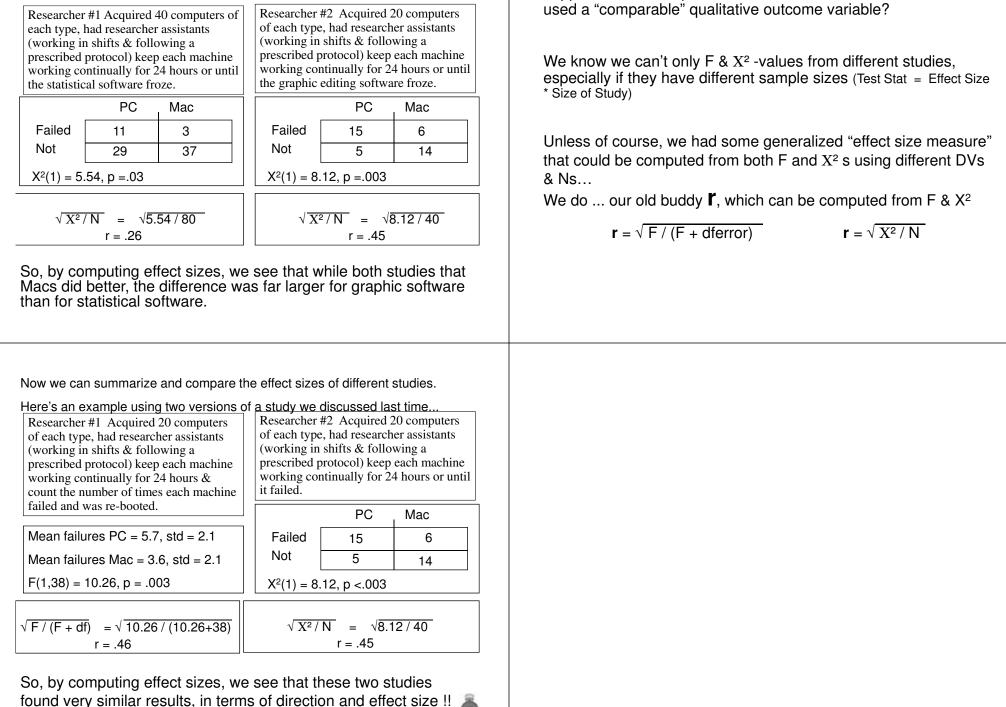
$$\mathbf{r} = \sqrt{X^2 / N}$$

By the way, when used this way "r"

Now we can summarize and compare the effect sizes of different studies. Here's an example using two versions of a study using ANOVA...

nces from studies w/ different DVs e F-values of studies that have Test Stat = Effect Size * Size of Study)	Researcher #1 Acquired 20 computers of each type, had researcher assistants (working in shifts & following a prescribed protocol) keep each machine working continually for 24 hours & count the number of times each machine failed and was re-booted. Researcher #2 Acquired 30 computers of each type, had researcher assistants (working in shifts & following a prescribed protocol) keep each machine working continually for 24 hours & count the number of times each machine
generalized "effect size measure" IOVAs using different DVs & Ns… n can be computed from F	Mean failures PC = 5.7Mean up time PC = 22.89Mean failures Mac = 3.6Mean up time Mac = 23.48 $F(1,38) = 10.26, p = .003$ $F(1,58) = 18.43, p = .001$
df _{error})	$ \sqrt{F/(F+df)} = \sqrt{10.26/(10.26+38)} r = .46 \sqrt{F/(F+df)} = \sqrt{18.43/(18.43+58)} r = .49 $
' is sometimes called η (eta).	So, we see that these two studies found very similar results – similar → effect direction (Macs better) & effect size !!
are results from studies that used or different sample sizes in X^2 ?	
ferences from studies w/ different sizes	
e X ² -values of studies that have Test Stat = Effect Size * Size of Study)	
generalized "effect size measure" s using different DVs & Ns n can be computed from F	
<u>1</u>	
' is sometimes called η (eta).	

Now we can summarize and compare the effect sizes of different studies. Here's an example using two versions of a study using X^2 ...



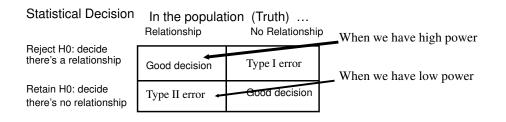
0

What about if we want to compare results from studies if one

happened to use a quantitative outcome variable and the other

Just a bit of review before discussing Power analysis ...

Statistical Power (also called sensitivity) is about the ability to reject H0: based on the sample data when there REALLY IS a correlation between the variables in the population



Statistical Power is increased by...

- larger effect (i.e., larger r between the variables)
- larger sample size

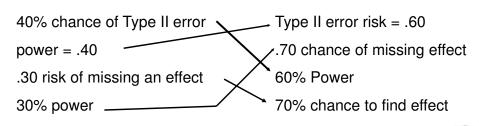
Statistical Power

- The ability to Reject H0: based on the sample data when there really is a correlation between the variables in the population
- Statistical Power is primarily about the sample size needed to detect an "r" of a certain size with how much confidence !!
- Statistical Power tell the probability of rejecting H0:, when it should be rejected.
- We'll use a "power table" for two kinds of Power Analyses
 - *a priori* power analyses are used to tell the what the sample size should be to find a correlation of a specified size
 - post hoc power analyses are used when you have retained H0:, and want to know the probability that you have committed a Type II error (to help you decide whether or not you "believe" the null result).

But first -- a few important things...

- Power analysis is about Type II errors, "missed effects" "retaining H0: when there really is a relationship in the population!!
- "Power" is the antithesis of "risk of Type II error"
 - Risk of Type II error = 1 power
 - Power = 1 Risk of Type II error

match up the following...



ō

a priori Power Analyses -- r

You want to be able to reject H0: if I is as large as .30

- pick the power you want
 - probability of rejecting H0: if there is a relationship between the variables in the population (H0: is wrong)
 - .80 is "standard" -- 80% confidence will reject H0: if there's an effect
- go to the table
 - look at the column labeled .30 (r = .30)
 - look at the row labeled .80 (power = .80)
 - you would want S = 82
- What about... necessary sample size (S)
 - r = .40 with power = .90 ???
 - r = .15 with power = .80 ???
 - r = .20 with power = .70 ???

The *catch* here is that you need some idea of what size correlation you are looking for!!! Lit review, pilot study, or "small-medium-large" are the usual solutions -- but you must start *a priori analyses* with an expected r !!!

Thinking about Effect Sizes, Power Analyses & Significance Testing with Pearson's Correlation

- Dr. Yep correlates the # hours students studied for the exam with % correct on that exam and found r(48) = .30, p. < .05).
- Dr. Nope "checks-up" on this by re-running the study with N=20 finding a linear relationship in the same direction as was found by Dr. Yep, but with r(18) = .30, p > .05).

What's up with that ???

Consider the correlations (effect sizes) \dots .30 = .30

But, consider the power for each

Dr. Yep -- we know we have "enough power", we rejected H0: Dr. Nope -- r = .30 with S = 20, power is < .30, so more than a 70% chance of a Type II error

Same correlational value in both studies -- but different H0: conclusions because of very different amounts of power (sample size).

post hoc *Power Analyses -- r*

You obtained r(30)=.30, p > .05, and decided to retain H0:

- What is the chance that you have committed a Type II error ???
- Compute S = df + 2 = 30 + 2 = 32
- go to the table
 - look at the column labeled r = .30
 - look down that column for S = 32 \rightarrow 24/33
 - read the power from the left-most column (.30-.40)
- Conclusion?
 - power of this analysis was .30-.40
 - probability that this decision was a Type II error (the probability we missed an effect that really exists in the population)
 = 1 power = 60-70%
 - NOT GOOD !! If we retain H0: there's a 60-70% chance we're wrong and there really is a relationship between the variables I the population We shouldn't trust this H0: result !!

Power analysis with r is simple, because

- r is the "standard" effect size estimate used for all the tests
- · the table uses r
- when working with F and X² we have to "detour" through r to get the effect sizes needed to perform our power analyses
 - here are the formulas again

$$\mathbf{I} = \sqrt{F/(F + df_{error})}$$
 and $\mathbf{I} = \sqrt{X^2/N}$

- as with r, with F and X^2
 - we have a priori and post how power analyses
 - for a priori analyses we need a starting estimate of the size of the effect we are looking for

Power Analyses - F -- your turn

- You obtained F(1,18) = 2.00, p > .05, and decided to retain H0:. What is the chance that you have committed a Type II error ???
- Compute r =
- Compute S =
- go to the table
 - what column do we look at ?
 - What value in column is closest to "S"
 - read the power from the left-most column
- Conclusion?

Power _____, so there is greater than _____ chance that this decision was a Type II error -- _____

To replicate this study with only a 10% risk of missing an effect you'd need a sample size of ...

Power Analyses $-X^2$

You get $X^2(1) = 3.00$, p > .05 based on N=45, and decided to retain H0:

- What is the chance that you have committed a Type II error ???
- Compute $r = \sqrt{X^2 / N} = \sqrt{3 / 45} = .26$
- Compute S = N = 45
- go to the table
 - look at the column labeled .25 (rounding down)
 - look down that column for $S = 45 \rightarrow 34/47$
 - read the power from the left-most column (.30-.40)
- Conclusion?
 - power of this analysis was .30-.40
 - probability that this decision was a Type II error (the probability we missed an effect that really exists in the population) = 1 power = 60-70% -- NOT GOOD !! We won't trust this H0: result !!

What if you plann to replicate this study -- what sample size would you want to have power = .80? What would be your risk of Type II error?

S = 82 - 41 in each cond. Type II error Risk = 20%

Now we can take a more complete look at types of statistical decision errors and the probability of making them ...

In the Population

		H0: True	H0: False
sion	Retain H0:	Correctly Retained H0:	Incorrectly Retained H0: Type II error
al Decision	Reta	Probability = 1 - α	Probability = β
Statistical	Reject H0:	Incorrectly Rejected H0: Type I error	Correctly Rejected H0:
	ŭ	Probability = α	Probability = $1 - \beta$

How this all works ...

Complete stat analysis and check the p-value

If reject H0: ...

- Type I & Type III errors possible
- p = probability of Type I error
- Prob. of Type III error not estimable
- MUST have had enough power (rejected H0: !)

If retain H0:

- 1. Need to determine prob. of Type II error
- Compute effect size \rightarrow r
- Compute S
- Determine power
- Type II error = 1 power
- 2. Likely to decide there's a power problem -- unless the effect size is so small that even if significant it would not be "interesting"

Let's learn how to apply these probabilities !!			
Imagine you've obtained $r(58) = .25, p = .05$			
If I decide to reject H0:, what's the chance I'm committing a Type I error ?	This is α (or p) = 5%		
If I decide to reject H0:, what's the chance I'm committing a Type III error ?	"not estimable"		
If I decide to reject H0:, what's the chance I'm committing a Type II error ?	0% Can't possibly commit a Type II error when you reject H0:		
	0% Can't commit a Type I error when you retain H0:		
	% Can't commit a Type III rror when you retain H0:		
If I decide to retain H0:, what's the	This is 1 - power (for r =.25, N=60, power = .5) so a 50% chance of a Type II error		