Pearson's r

- Scatterplots for 2 Quantitative Variables
- Research and Null Hypotheses for r
- Casual Interpretation of Correlation Results (& why/why not)
- Computational stuff for hand calculations

Displaying the data for a correlation: With two quantitative variables we can display the bivariate relationship using a "scatterplot"

When examining a scatterplot, we look for three things...

The Pearson's correlation (r) summarizes the direction and strength of the linear relationship shown in the scatterplot

- r has a range from -1.00 to 1.00
 - 1.00 a perfect positive linear relationship
 - 0.00 no linear relationship at all
 - -1.00 a perfect negative linear relationship
- r assumes that the relationship is linear
 - if the relationship is not linear, then the r-value is an underestimate of the strength of the relationship at best and meaningless at worst

For a non-linear relationship, r will be based on a "rounded out" envelope -- leading to a misrepresentative r

Stating Hypotheses with r ...

Every RH must specify ...

- the variables
- the direction of the expected linear relationship
- the population of interest
- Generic form ...

There is a no/a positive/a negative **linear** relationship between X and Y in the population represented by the sample.

Every H0: must specify ...

- the variables
- that no linear relationship is expected
- the population of interest
- Generic form ...

There is a no **linear** relationship between X and Y in the population represented by the sample.

For each of the following show the envelope for the H0: and the RH:

What "retaining H0:" and "Rejecting H0:" means...

- When you retain H0: you're concluding...
 - The linear relationship between these variables in the sample <u>is not</u> strong enough to allow me to conclude there is a linear relationship between them in the population represented by the sample.
- When you reject H0: you're concluding...
 - The linear relationship between these variables in the sample <u>is</u> strong enough to allow me to conclude there is a linear relationship between them in the population represented by the sample.

Deciding whether to retain or reject H0: when using r ... When computing statistics by hand

- compute an "obtained" or "computed" r value
- look up a "critical r value"
- compare the absolute value of the obtained r to the critical value
 - if |r-obtained| < r-critical Retain H0:
 - if |r-obtained| > r-critical Reject H0:

When using the computer

- compute an "obtained" or "computed" r value
- compute the associated p-value ("sig")
- examine the p-value to make the decision
 - if p > .05 Retain H0:
 - if p < .05 Reject H0:

Practice with Pearson's Correlation (r)

The RH: was that younger adolescents would be more polite.

A sample of 84 adolescents were asked their age and to complete the Politeness Quotient Questionnaire Retain or Reject H0: ???

Support for RH: ???

obtained r = -.453 critical r = .254

Again...

The RH: was that older professors would receive lower student course evaluations.

A sample of 124 Introductory Psyc students from 12 different sections completed the Student Evaluation. Profs' ages were obtained (with permission) from their files. Retain or Reject H0: ??? Support for RH: ???

obtained $r = -.352 \quad p = .431$

Statistical decisions & errors with correlation ...

In the Population

Statistical Decision	- r	r = 0	+ r
- r (p < .05)	Correct H0: Rejection & Pattern	Type I "False Alarm"	Type III "Mis-specification"
f = 0 (p > .05)	Type II "Miss"	Correct H0: Retention	Type II "Miss"
+ ľ (p < .05)	Type III "Mis-specification"	Type I "False Alarm"	Correct H0: Rejection & Pattern

Remember that "in the population" is "in the majority of the literature" in practice!!

A bit about computational notation for r ...

As before, sort the datafrom the study into two columns – one for each variable (X & Y).

Make a column of squared values for each variable (X² & Y²)

- sum each column -- making a ΣX , ΣX^2 , ΣY , ΣY^2
- Make a column that's the product of each participants scores
 - \bullet sum the products to get $\Sigma {\rm XY}$

Practice		Performance		
Х	X^2	Y	Y^2	XY
3	9	5	25	15
5	25	8	64	40
4	16	6	36	24
12	50	19	125	79
ΣΧ	ΣX^2	ΣΥ	ΣY^2	ΣΧΥ

About causal interpretation of correlation results ...

We can only give a causal interpretation of the results if the data were collected using a true experiment

- random assignment of subjects to conditions of the "causal variable" (IV)
 -- gives initial equivalence.
- manipulation of the "causal variable" (IV) by the experimenter
 -- gives temporal precedence
- control of procedural variables
 gives ongoing eq.

Most applications of Pearson's r involve quantitative variables that are subject variables -- measured from participants

In other words -- a Natural Groups Design -- with ...

• no random assignment -- no initial equivalence

- no manipulation of "causal variable" (IV) -- no temporal precendence
- no procedural control -- no ongoing equivalence

Under these conditions causal interpretation of the results is not appropriate !!

A bit about computational notation for r, continued ...

The computations for r are slightly different –but all the various calculations will use combinations of these five terms – be sure you are using the correct one !

 $\Sigma X \Sigma X^2$ $\Sigma Y \Sigma Y^2 \Sigma X Y$

Other symbols you'll need to know are...

• N = total number of participants