Pearson's r

- Scatterplots for 2 Quantitative Variables
- Research and Null Hypotheses for r
- Casual Interpretation of Correlation Results (\& why/why not)
- Computational stuff for hand calculations

Displaying the data for a correlation:
With two quantitative variables we can display the bivariate relationship using a "scatterplot"

When examining a scatterplot, we look for three things...

- relationship
- no relationship
- linear
- non-linear
- direction (if linear)
- positive
- negative
- strength
- strong
- moderate
- weak

linear, positive, weak

linear, positive, strong

linear, negative,

Puppy	Age (x)	Eats (y)
Sam	8	2
Ding	20	4
Ralf	12	2
Pit	4	1
Seff	24	4
\ldots
Toby	16	3

The Pearson's correlation (r) summarizes the direction and strength of the linear relationship shown in the scatterplot

- r has a range from -1.00 to 1.00
- 1.00 a perfect positive linear relationship
- 0.00 no linear relationship at all
- -1.00 a perfect negative linear relationship
- r assumes that the relationship is linear
- if the relationship is not linear, then the r-value is an underestimate of the strength of the relationship at best and meaningless at worst

For a non-linear relationship, r will be based on a "rounded out" envelope -- leading to a misrepresentative r

Match the r values and the "envelopes" below

Stating Hypotheses with r ...
Every RH must specify ...

- the variables
- the direction of the expected linear relationship
- the population of interest
- Generic form ...

There is a no/a positive/a negative linear relationship between X and Y in the population represented by the sample.

Every H0: must specify ...

- the variables
- that no linear relationship is expected
- the population of interest
- Generic form ...

There is a no linear relationship between X and Y in the population represented by the sample.

For each of the following show the envelope for the H 0 : and the RH:

For each of the following show the envelope for the HO : and the RH:

What "retaining H0:" and "Rejecting H0:" means...

- When you retain HO: you're concluding...
- The linear relationship between these variables in the sample is not strong enough to allow me to conclude there is a linear relationship between them in the population represented by the sample.
- When you reject H0: you're concluding...
- The linear relationship between these variables in the sample is strong enough to allow me to conclude there is a linear relationship between them in the population represented by the sample.

Deciding whether to retain or reject H 0 : when using r ...
When computing statistics by hand

- compute an "obtained" or "computed" r value
- look up a "critical r value"
- compare the absolute value of the obtained r to the critical value
- if |r-obtained| < r-critical Retain HO :
- if |r-obtained| > r-critical Reject H0:

When using the computer

- compute an "obtained" or "computed" r value
- compute the associated p-value ("sig")
- examine the p-value to make the decision
- if $p>.05$
Retain HO:
- if $p<.05$
Reject H0:

The RH: was that younger adolescents would be more polite.

A sample of 84
adolescents were asked their age and to complete the

Retain or Reject H0: ??? Politeness Quotient Questionnaire
obtained $\mathrm{r}=-.453$ critical $\mathrm{r}=.254$

The RH: was that older professors would receive lower student course evaluations.

A sample of 124
Retain or Reject H0: ???
Introductory Psyc
students from 12
different sections
completed the Student Support for RH: ???
Evaluation. Profs’
ages were obtained
(with permission)
from their files.
obtained r=-. $352 \quad \mathrm{p}=.431$

In the Population

Statistical Decision	- r	$r=0$	+
$\begin{gathered} -r \\ (p<.05) \end{gathered}$	Correct HO: Rejection \& Pattern	Type I "False Alarm"	Type III "Mis-specification"
$\begin{gathered} r=0 \\ (p>.05) \end{gathered}$	Type II "Miss"	Correct HO: Retention	Type II "Miss"
$\stackrel{+}{r(p<.05)}$	Type III "Mis-specification"	Type I "False Alarm"	Correct HO : Rejection \& Pattern

Remember that "in the population" is "in the majority of the literature" in practice!!

We can only give a causal interpretation of the results if the data were collected using a true experiment

- random assignment of subjects to conditions of the "causal variable" (IV) -- gives initial equivalence.
- manipulation of the "causal variable" (IV) by the experimenter -- gives temporal precedence
- control of procedural variables
-- gives ongoing eq.
Most applications of Pearson's r involve quantitative variables that are subject variables -- measured from participants
In other words -- a Natural Groups Design -- with ...
- no random assignment -- no initial equivalence
- no manipulation of "causal variable" (IV) -- no temporal precendence
- no procedural control -- no ongoing equivalence

Under these conditions causal interpretation of the results is not appropriate !!

A bit about computational notation for r ..
As before, sort the datafrom the study into two columns - one for each variable (X \& Y).
Make a column of squared values for each variable ($\mathrm{X}^{2} \& \mathrm{Y}^{2}$)

- sum each column -- making a $\Sigma \mathrm{X}, \Sigma \mathrm{X}^{2}, \Sigma \mathrm{Y}, \Sigma \mathrm{Y}^{2}$

Make a column that's the product of each participants scores

- sum the products to get $\Sigma \mathrm{XY}$

Practice			Performance	
X	X^{2}	Y	Y^{2}	XY
3	9	5	25	15
5	25	8	64	40
4	16	6	36	24
12	50	19	125	79
$\Sigma \mathrm{X}$	$\Sigma \mathrm{X}^{2}$	$\Sigma \mathrm{Y}$	$\Sigma \mathrm{Y}^{2}$	$\Sigma \mathrm{XY}$

The computations for r are slightly different -but all the various calculations will use combinations of these five terms - be sure you are using the correct one!

$\begin{array}{llllll}\Sigma \mathrm{X} & \Sigma \mathrm{X}^{2} & \Sigma \mathrm{Y} & \Sigma \mathrm{Y}^{2} & \Sigma \mathrm{XY}\end{array}$

Other symbols you'll need to know are...

- $\mathrm{N}=$ total number of participants

