
The “NHST Controversy”–

Confidence Intervals, Effect Sizes & 

Power Analyses

• The controversy
• A tour through the suggested alternative solutions

– Ban NHST
– Retain NHST as-is
– Augment NHST

• How meta-analysis relates to this issue
• Confidence intervals (single means, mean differences & correlations)
• Confidence intervals & significance tests
• Effect size estimates for correlation, ANOVA & Chi-square
• Power Analyses – a priori & post hoc

• Alternatives to Power Analysis
• Considering “Stability” in addition to power
• Putting it all together  NHST+

The “NHST Controversy”

• For as long as there have been NHSTing there has been an 
ongoing “dialogue” about its sensibility and utility.

• Recently this discussion has been elevated to a “controversy” --
with three “sides” ...

• those who would eliminate all NHSTing

• those who would retain NHSTing as the centerpiece of 
research data analysis (short list & hard to tell from …)

• those who would improve & augment NHSTing

• Results of this “controversy” have included ...

• hundreds of articles and dozens of books 

• changes in the publication requirements of many journals

• changes in information required of proposals by funding 
agencies

Let’s take a look at the two most common positions…

Ban the NHST…

• the “Nill Null” is silly and never really expected

• the real question is not whether there is a relationship (there 

almost certainly is) but whether it is large enough to “care 

about” or “invest in”

• it misrepresents the real question of “how large is the effect” 

as “whether or not there is an effect”

• NHST has been used so poorly for so long that we should 

scrap it and replace it with “appropriate statistical analyses”

What should we do… (will just mention these -- more to come about each)

• effect size estimates (what is the size of the effect)

• confidence intervals



Keep NHST, but do it better and augment it …

Always perform power analyses (more about actually doing it later)

• Most complaints about NHST mistakes are about Type II
errors (retaining H0: there there is a relationship between the 
variables in the population)

• Some authors like to say “64% of NHST decisions are wrong”

• 5% of rejected nulls (using p = .05 criterion, as expected)

• another 59% from Type II errors directly attributable to 
using sample sizes that are too small

Consider the probabilities involved 

• if reject H0: consider the chances it is a Type I error (p)

• if retain H0: consider the chances is it a Type II error (more later)

Consider the effect size, not just the NHST (yep, more later…)

• how large is the effect and is that large enough to “care  
about” or “invest in”

Consider Confidence intervals (more later, as you could guess…)

• means, mean differences and correlations are all “best 
guesses” of the size of the effect

• NHST are a guess of whether or not they are “really zero”

• CIs give information about the range of values the “real” 
population mean, mean difference or r might have

Consider Non-Nill NHST

• it is possible to test for any “minimum difference”, not just for 
“any difference greater than 0”

• there are more elegant ways of doing it but you can…

• if H0: is “TX will improve performance by at least 10 points” ...

• just add 10 to the score of everybody in the Cx group

• if H0: is “correlation is at least .15” …

• look up r-critical for that df, and compare it to r - .15

Another “wave” that has hit behavioral research is “meta analysis”

• meta analysis is the process of comparing and/or combining the 
effects of multiple studies, to get a more precise estimate of 
effect sizes and likelihood of Type I and Type II errors

• meta analysts need “good information” about the research they 
are examining and summarizing, which has led to some 
changes about what journals ask you to report…

• standard deviations (or variances or SEM)

• sample sizes for each group (not just overall)

• exact p-values

• MSe for ANOVA models

• effect sizes (which is calculable if we report other things)

• by the way -- it was the meta analysis folks who really started 
fussing about the Type II errors caused by low power --
finding that there was evidence of effects, but nulls were 
often retained because the sample sizes were too small



Confidence Intervals

Whenever we draw a sample and compute an inferential statistic, 

that is our best estimate of the population parameter.  
However, we know two things:

the statistic is unlikely to be exactly the same as the parameter
we are more confident in our estimate the larger our sample size

Confidence intervals are a way of “capturing” or expressing our 
confidence that the value of the parameter of interest is     
within a specified range.

That’s what a CI tells you -- starting with the statistics drawn from 
the sample, within in what range of values is the
related population parameter how likely to be.

There are 3 types of confidence intervals that we will learn about…

1. confidence interval around a single mean

2. confidence interval around a mean difference

3. confidence interval around a correlation

CI for a single mean

Gives us an idea of the precision of the inferential estimate of 
the population mean

• don’t have to use a 95% CI (50%, 75%, 90% & 99% are 
also fairly common

Eg. … Your sample has a mean age = 19.5 years, a std = 2.5 &  a sample size of n=40

50% CI CI(50)  =  19.5 +/- .268 =   19.231 to 19.768

We are 50% certain that the real population means is 
between 19.23 and 19.77

95% CI CI(95)  =  19.5 +/- .807 =    18.692 to 20.307

We are 95% certain that the real population means is 
between 18.69 and 29.31

99% CI CI(99)  =  19.5 +/- 1.087 = 18.412 to 20.587

We are 99% certain that the real population means is 
between 18.41 and 20.59

Notice that the CI must be wider for us to have more confidence.

It is becoming increasingly common to include “whiskers” on line 

and bar graphs.  Different folks espouse different “whiskers” …

• standard deviation -- tells variability of population scores around 
the estimated population mean

• SEM -- tells the variability of sample means around the true 
population mean

CI -- tells with what probability/confidence the population is within 
what range/interval around the estimate from the sample

Things to consider…

• SEM and CI, but not std, are influenced by the sample size

• The SEM will always be smaller (“look better”) than the std

• 1 SEM will be smaller than CI 

• but 2 SEMs is close to 95% CI (1.96*SEM = 95% CI)

• Be sure your choice reflects what you are trying to show 

• variability in scores (std) or sample means (SEM) or 
confidence in population estimates estimate (CI)



CI for a mean difference (two BG groups or conditions)

Gives us an idea of the precision of the inferential estimate of 
the mean difference between the populations.

• Of course you’ll need the mean from each group to 
compute this CI!  
• You’ll also need either…

The Std and n for each group or the MSerror from the ANOVA

Eg. … Your sample included 24 experts with a mean age of 19.37 (std = 1.837) 
& 18 novices with a mean age of 21.17 (std = 2.307).  Using SPSS, an ANOVA 
revealed  F(1,40) = 7.86, p = .008, MSe = 4.203

95% CI CI(95)  = 1.8 +/- 1.291 =    .51 to 3.09
We are 95% certain that the real population mean age of the novices is 
between .47 lower than the novice mean age and 3.09 lower than the 
novice mean age, with a best guess that the mean difference is 1.8.

99.9% CI CI(99.9)  = 1.8 +/- 2.269 =    -.47 to 4.069
We are 99.9% certain that the real population mean age of the

experts is between .51 higher than the novices mean age and 4.07 
lower than the novice mean age , with a best guess that the experts have a 

mean age 1.8 years lower than the novices.

Confidence Interval for a correlation

Gives us an idea of the precision of the inferential estimate of 

the correlation between the variables.

• You’ll need just the correlation and the sample size

• One thing – correlation CIs are not symmetrical around the r-

value, so they are not expressed as “ r +/- CI value” 

Eg. … Your student sample of 40 had a correlation between age and 

#credit hours completed of r = .45 (p = .021).

95% CI CI(95)  = .161 to .668
We are 95% certain that the real population correlation is 

between .16 and .67, with a best estimate of .45.

99.9% CI CI(99.9)  =  -.058 to .773
We are 99.9% certain that the real population 

correlation is between -.06 and .77, with a best estimate of .45.

NHST & CIs

The 95% CI around a single mean leads to the same conclusion 

as does a single-sample t-test using p = .05 …

• When the 95% CI does not include the hypothesized population 

value the t-test of the same data will lead us to reject H0:

• from each we would conclude that the sample probably did 

not come from a population with the hypothesized mean

• When the 95% CI includes the hypothesized population value 

the t-test of the same data will lead us to retain H0:

• from each we would conclude that the sample might well 

have come from a population with the hypothesized mean



1-sample t-test & CI around a single mean

From the earlier example -- say we wanted a sample from a 

population with a mean age of 21

1-sample t-test

• with H0: = 21, M=19.5, std = 2.5, n = 41

• t = (21 - 19.5) / .395 = 3.80

• looking up t-critical gives t(40, p=.05)  =  2.02

• so … reject H0: and conclude that this sample probably did not   
.   come from a pop with a mean age less than 21

CI around a single mean

• we found 95% CI = 19.5 +/- .807  =    18.692 to 20.307

• because the hypothesized/desired value is outside the CI, we 
would conclude that the sample probably didn’t come from 
a population with the desired mean of 21

Notice that the conclusion is the same from both “tests” -- this 
sample probably didn’t come from a pop with a mean age of 21

BG ANOVA  & CI around a mean difference

Your sample included 24 experts with a mean age of 19.37 (std = 
1.837) & 18 novices with a mean age of 21.17 (std = 2.307). 

BG ANOVA

• F(1,40) = 7.86, p = .008, MSe = 4.203

• so … reject H0: and conclude that the populations of novices 
and experts have different mean ages

CI around a mean difference

• we found 95% CI = 1.8 +/- 1.291  =    .51 to 3.09

• because a mean difference of 0 is outside the CI, we would 
conclude that the populations of novices and experts have 
different mean ages

Notice that the conclusion is the same from both “tests” – these 
sample probably didn’t come from populations with the same 
mean age

r significance test  & CI around an r value

Your student sample of 40 had a correlation between age and 

#credit hours completed of r = .45 (p = .021).

r significance test

• p < .05, so would reject H0: and conclude that variables are 

probably correlated in the population

CI around an r-value

• we found 95% CI = .161 to .668

• because an r-value of 0 is outside the CI, we would conclude 
that there probably is a correlation between the variables in the 
populations

Notice that the conclusion is the same from both “tests” – these 
variables probably are correlated in the population



Effect Size and Statistical Significance - two useful pieces of info

Statistical Significance Test (Summary) Statistic (t, F and χ²)

• used primarily as an intermediate step to obtain the p-value for 
the statistical decision 

• the p-value is used to decide ”whether or not there is an effect”

Effect size refers to 

• the strength or magnitude of the relationship between the
variables in the population.

• the extent of departure from the H0: (no relationship) 

Their relationship

Significance Test Stat = Effect Size *     Size of Study

Effect Size = Significance Test Stat /     Size of Study

This formula/relationship tells us

• for any given nonzero effect size, the value of the test statistic 

(e.g., t, F, X²) will increase as does the sample size (N)

• for any nonzero effect size, increase in the effect size OR 

increase in the value of the test statistic will result in a 

lower p-value, and greater confidence that the population 

effect size is nonzero

We want to have estimates of effect size/strength that are 

separable from our inferential test statistic.  The key will be to 

compose these estimates so that the value of the estimate is 

independent of the size of the study (N).

When we use correlation, r is both a summary statistic and an 

effect size estimate.

• For any given N, df = N-2, and we can look up the critical-r value 

and decide whether to retain or reject H0: 

• Also, we know that the larger r is (+ or -), then the stronger is 

our estimate of the linear relationship between the 

variables in the population 

• with practice we get very good at deciding whether r
is “small” (r = .10), “medium” (.30) or  “large” (.50)

• We can compare the findings of different studies by comparing 

the r values they found.



Thinking about Effect Sizes, Power Analyses & 

Significance Testing with Pearson’s Correlation

• Dr.  Yep correlates the # hours students studied for the exam with % 

correct on that exam and found r(48) = .30, p. < .05).

• Dr. Nope “checks-up” on this by re-running the study with N=20 

finding a linear relationship in the same direction as was found by 

Dr. Yep, but with r(18) = .30, p > .05).

What’s up with that ???

Consider the correlations (effect sizes) …  .30 = .30

But, consider the power for each  

Dr. Yep  -- we know we have “enough power”, we rejected H0:

Dr. Nope  -- r = .30 with S = 20,  power is < .30, so more than a 

70% chance of a Type II error

Same correlational value in both studies -- but different H0: conclusions 
because of very different amounts of power (sample size).

But what if we want to compare the results from studies that used 
different analyses (because they used quant vs. qual variables)??

• We know we can only compare F-values of studies that have 
the same sample sizes (Test Stat =  Effect Size * Size of Study)

• We know we can only compare X2-values of studies that have 
the same sample sizes (Test Stat = Effect Size * Size of Study)

• We can’t compare studies that did F-tests with those that did X2-
tests and can’t compare either with studies that used r

Unless of course, we had some generalized “effect size measure” 

that could be computed from all of these statistical tests…

We do ... our old buddy r, which can be computed from F or X2

r = √ F / (F + dferror)       and             r = √ Χ² / N 

By the way, when used this way “r” is sometimes called η (eta).  

Also, you want to be sure to distinguish between r/η and r2/ η2

Now we can summarize and compare the effect sizes of different studies.
Here’s an example using two versions of a study using ANOVA...

Researcher #1 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours & 
count the number of times each machine 
failed and was re-booted.

Researcher #2 Acquired 30 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours & 
measured the time each computer was 
running.

Mean failures PC = 5.7

Mean failures Mac = 3.6

F(1,38) = 10.26, p = .0004

√ F / (F + df) = √ 10.26 / (10.26+38)

r = .46

So, we see that these two studies found very similar results –
similar  effect direction  (Macs better) & effect size !!

√ F / (F + df)   = √ 18.43 / (18.43+58)
r = .49

Mean up time PC = 22.89

Mean up time Mac = 23.48

F(1,58) = 18.43, p = .001



Now we can summarize and compare the effect sizes of different studies. 
Here’s an example using two versions of a study using X2...

Researcher #1 Acquired 40 computers of 
each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours or until 
the statistical software froze.

Researcher #2 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours or until 
the graphic editing software froze.

So, by computing effect sizes, we see that the same effects were 
found in the two studies – the difference in terms of p-value & 

“significance” was due to sample size!

Failed

Not

PC         Mac

8

5

3

6

X2(1) = 1.69, p =.193

√ Χ² / N     =    √1.69 / 22

r = .28

Failed

Not

PC         Mac

11

29

3

37

X2(1) = 5.54, p =.03

√ Χ² / N     =    √5.54 / 80

r = .26

What about if we want to compare results from studies if one 
happened to use a quantitative outcome variable and the other 
used a “comparable” qualitative outcome variable?

We know we can’t only F & Χ² -values from different studies, 
especially if they have different sample sizes 

(Test Stat =  Effect Size * Size of Study)

Unless of course, we had some generalized “effect size measure” 

that could be computed from both F and Χ² s using different DVs 

& Ns…

We do ... our old buddy r, which can be computed from F & X2

r = √ F / (F + dferror) r = √ Χ² / N

Now we can summarize and compare the effect sizes of different studies.

Here’s an example using two versions of a study we discussed last time...

Researcher #1 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours & 
count the number of times each machine 
failed and was re-booted.

Researcher #2 Acquired 20 computers 
of each type, had researcher assistants 
(working in shifts & following a 
prescribed protocol) keep each machine 
working continually for 24 hours or until 
it failed.

Mean failures PC = 5.7, std = 2.1

Mean failures Mac = 3.6, std = 2.1

F(1,38) = 10.26, p = .003
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Not

PC         Mac

15

5

6

14

X2(1) = 8.12, p <.003

√ F / (F + df) = √ 10.26 / (10.26+38)

r = .46

√ Χ² / N     =    √8.12 / 40

r = .45

So, by computing effect sizes, we see that these two studies 

found very similar results, in terms of direction and effect size !!



Families of Effect Size Estimates

r  -- variations on the correlation coefficient 

-- η is a common variation (range = 0 to 1.0)

r² -- variations on the “shared variance” statistics (e.g., η ²)

ω/ ω² -- variations on the omega(²) statistic that attempt to correct 

for the likelihood of overestimating the strength of the  

population effect size with a large sample

-- have their greatest popularity with ANOVA-types

d  -- an index of effect size in terms of the size of the mean 

difference between two groups expressed as the propotion 

of a standard deviation (most applicable to analyzes 

comparing means using t-test & ANOVA)

Computing Effect Size Estimates  -- We will focus on the r², r, 

and d estimates (the most common, especially in meta-analysis)

r ²(r) is the most common and most generalizable --

r² =   t²/ (t² + df)   (df = N - 2)

r  =  √ [t²/ (t² + df)] 

r² = F / (F + dferror)    (dferror = N - 2)

r  = √ [ F / (F + dferror)]                    (2-group designs)

r² = Χ² / N                        (when df = 1)

r  = √ [ Χ² / N]

r² (proportion of shared variance)  “versus” r (size of relationship)

Two “warring camps” (and only part of the argument)

r² many psychological “effects” are small (e.g., “significant” 

clinical effects have typical r² = .06) and probably have little 

impact on daily life, mental health, etc. 

r some small effects are very meaningful (r² = .04 in a study of 

jury decision bias means 10 fewer “innocent” people 

sentenced to death per year)

Keep in mind…

since r = √r ²  the discussion is not about the “math” but the 

“accuracy of representation” … which “expression” will lead to the 

most people having the “best” understanding of the meaningful 

size of the effect  ??



Computing Effect Size Estimates, cont.

d  =  (M1 - M2 )  /  spooled            (spooled = pooled std dev)

[ (n1 -1) * S²1 ] + [ (n2 - 1) * S²2 ] n1 & n2 = sample sizes

Spooled = √ -----------------------------------------

n1 * n2 S²1 & S²2 = sample variances (std²)

Spooled = √ MSerror MSerror is  “ Within Groups  Mean Squares” in SPSS output

d =   2t / √ df ( equal-n formula   rem: t = √F )

d =  [ t  * (n1 + n2 ) ]  /   [√ df * √ (n1*n2) ] (unequal-n)

Again,  d is the mean difference between the groups expressed 

as a proportion of the (pooled) standard deviation

Just a bit of review before discussing Power analysis

Statistical Power (also called sensitivity) is about the ability to 

reject H0: based on the sample data when there REALLY IS a 

correlation between the variables in the population

In the population  (Truth)  …
Relationship No Relationship

Statistical Decision

Reject H0: decide 
there’s a relationship

Retain H0: decide 

there’s no relationship

Good decision

Good decision

Type I error

Type II error

When we have high power

When we have low power

Statistical Power is increased by…

• larger effect (i.e., larger r between the variables)

• larger sample size

Statistical Power

• The ability to Reject H0: based on the sample data when there 

really is a correlation between the variables in the population

• Statistical Power is primarily about the sample size needed to 

detect an “r” of a certain size with how much confidence !!

• Statistical Power tell the probability of rejecting H0:, when it 

should be rejected.

• On the “next after” page is a “power table” we use for ...

• Two kinds of Power Analyses

– a priori power analyses are used to tell the what the sample 

size should be to find a correlation of a specified size

– post hoc power analyses are used when you have retained 

H0:, and want to know the probability that you have 

committed a Type II error (to help you decide whether or not 

you “believe” the null result).



But first -- a few important things…

• Power analysis is about Type II errors, “missed effects” 

“retaining H0: when there really is a relationship in the population!!

• “Power” is the antithesis of  “risk of Type II error”

• Risk of Type II error = 1 - power

• Power = 1 - Risk of Type II error

match up the following...

40% chance of Type II error

power = .40

.30 risk of missing an effect

30% power

Type II error risk = .60

.70 chance of missing effect

60% Power

70% chance to find effect

Here’s the power table we’ll use most often…

a priori Power Analyses -- r
You want to be able to reject H0: if r is as large as .30

• pick the power you want 
– probability of rejecting H0: if there is a relationship between the variables 

in the population (H0: is wrong)

– .80 is “standard” -- 80% confidence will reject H0: if there’s 
an effect

• go to the table

– look at the column labeled  .30 (r = .30)
– look at the row labeled .80 ( power = .80)

– you would want S = 82

• What about… necessary sample size (S)

– r = .40 with power = .90 ???

– r = .15 with power = .80 ???

– r = .20 with power = .70 ???

The catch here is that you need some idea of what size correlation you are 
looking for!!!  Lit review, pilot study, or “small-medium-large” are the usual 
solutions -- but you must start a priori analyses with an expected r !!!



How do you really do an a priori Power Analysis ???

The basis for a worthwhile a priori power analysis is a good set of 

effect size estimates – one for each of the pairwise comparisons 

needed to test the RH: ( especially for the smallest effect we want 

to “chase” ! )

But from where do we get the estimates?

Most studies are a combination of replication comparisons and 
new comparisons

• get the effects sizes for the replication comparisons from the lit

• get the effects sizes for the new comparisons indirectly …

• do you expect your new conditions to yield larger or smaller 
pairwise effects than the replications? How much so ?

• use the std or MSerror from earlier studies to help compute r 

How do you really do a priori Power Analyses ???

Example  
Two conditions in the study are replications – one is new
• based on lit rev we expect means of Cx = 30 & TxOld = 50
• that lit also shows std for these conditions ≈  20
• we expect our TxNew to have a mean of about 60

The smallest mean dif   smallest pairwise effect size

• for TxOld (50) vs. TxNew (60)

• comp r   using MSerror = std2  (202 = 400)  giving r = .24

Now we can do the a priori power analysis

• with r = .25 and 80% power S = 120 

• for each of the 2 conditions       n = S / 2 =  120 / 2  = 60

• for the whole study                     N  = n * k  = 60 * 3 = 180

With enough power for this smallest effect, we’ll have ample 
power for the other larger effects.

post hoc Power Analyses -- r

You obtained r(30)=.30, p > .05, and decided to retain H0:

• What is the chance that you have committed a Type II error ??? 

• Compute S = df + 2  = 30 + 2 = 32

• go to the table

– look at the column labeled  r = .30

– look down that column for S = 32  24/33

– read the power from the left-most column (.30-.40)

• Conclusion?
– power of this analysis was .30-.40

– probability that this decision was a Type II error (the 
probability we missed an effect that really exists in the 
population)                = 1 - power = 60-70%

– NOT GOOD !! If we retain H0: there’s a 60-70% chance 
we’re wrong and there really is a relationship between the 
variables I the population We shouldn’t trust this H0: result !!



post hoc “vs.”  a priori power  -- big enough sample?!?

Four analyses from the same study  (n = 21) …

r =.55, p<05           

post-hoc power 
for this study

>.90 from S=42 S = 20 for .80

Caveats:

“Enough” post-hoc N might not be “enough” a priori N !!!

r =.30, p<.05           ≈.50 from S=42 S = 82 for .80!!!

“enough power”

a priori power 
for next study

Informal power 
analysis

“enough power”

r =.20, p>.05           ≈.27 from S=42 S = 191 for .80“not enough power”

r =.02, p>.05           <.01 from S=42 S>3000 for .80“not power problem” !!!

How small of an effect can you afford to “chase”??

Power analysis with r is simple, because… 

• r is the “standard” effect size estimate used for all the tests 

• the table uses r

• when working with F and X2 we have to “detour” through r to 

get the effect sizes needed to perform our power analyses

• here are the formulas again

r = √ F / (F + dferror)       and             r = √ Χ² /  N 

• as with r, with F and X2

• we have a priori and post how power analyses

• for a priori analyses we need a starting estimate of the size of 

the effect we are looking for

post hoc Power Analyses  -- F

You obtained F(1, 28) = 3.00, p > .05, and decided to retain H0:

• What is the chance that you have committed a Type II error ??? 

• Compute r = √ F / ( F + dferror) = √ 3 / (3 + 28) = .31

• Compute S = dferror + #IV cond = 28 + 2 = 30
• go to the table

– look at the column labeled  .30 (closest to r = .31)
– look down that column for S = 30 (33 is closest)
– read the power from the left-most column ( .40 )

• Conclusion?
– power of this analysis was .40
– probability that this decision was a Type II error (the probability 

we missed an effect that really exists in the population) = 1 -
power = 60% -- NOT GOOD !! We won’t trust this H0: result !!

What if you plan to replicate this study -- what sample size would you 

want to have power = .80?  What would be your risk of Type II error?

S = Type II error Risk = 82 - 41 in each cond. 20%



post hoc  Power Analyses  -- X2

You get X2(1) = 3.00, p > .05 based on N=45, and decided to retain H0:

• What is the chance that you have committed a Type II error ??? 

• Compute r = √ X2 /  N    = √ 3 / 45 = .26

• Compute S = N = 45
• go to the table

– look at the column labeled  .26  
– look down that column for S = 45 (33 is closest)
– read the power from the left-most column ( .40 )

• Conclusion?
– power of this analysis was .40

– probability that this decision was a Type II error (the probability 

we missed an effect that really exists in the population) = 1 - power 

= 60% -- NOT GOOD !! We won’t trust this H0: result !!

What if you plan to replicate this study -- what sample size would you 

want to have power = .80?  What would be your risk of Type II error?

S = Type II error Risk = 120 - 60 in each cond. 20%

Now we can take a more complete look at types of statistical 

decision errors and the probability of making them ...

In the Population

H0: True                           H0: False

S
ta

ti
s
ti
c
a
l 
D

e
c
is

io
n

R
e
je

c
t 
H

0
: 

  
  
  
R

e
ta

in
 H

0
:

Correctly Retained H0:

Correctly Rejected H0:Incorrectly Rejected H0:

Type I  error

Incorrectly Retained H0:

Type II  error

Probability  =   α Probability  =  1 - β

Probability  =  βProbability  = 1 - α

How this all works …

Complete stat analysis and check the p-value

If reject H0: …

- Type I & Type III errors 

possible

• p = probability of Type I 

error

• Prob. of Type III error not 

estimable

• MUST have had enough 

power (rejected H0: !)

If retain H0:

1. Need to determine prob. 

of Type II error
• Compute effect size  r
• Compute S
• Determine power
• Type II error = 1 - power 

2.  Likely to decide there’s a 
power problem -- unless 
the effect size is so small 
that even if significant it 
would not be “interesting”



Applyiung these probabilities !!

Imagine you’ve obtained     r(58) = .25, p = .05

If I decide to reject H0:, what’s the chance 
I’m committing a Type I error ?

If I decide to reject H0:, what’s the chance 
I’m committing a Type III error ? 

If I decide to reject H0:, what’s the 
chance I’m committing a Type II error ?

This is α (or p)  = 5%

0% -- Can’t possibly commit 
a Type II error when you 
reject H0:

For r =.25, S=60, power = 50% 
So I have a 50% chance of 
Type II error

0% -- Can’t commit a Type I 
error when you retain H0:

If I decide to retain H0:, what’s my chance 

of committing a Type I error ?

If I decide to retain H0:, what’s my chance 

of committing a Type III error ?

If I decide to retain H0:, what’s the 

chance I’m committing a Type II error ?

“not estimable”

0% -- Can’t commit a Type III 
error when you retain H0:

Alternatives to Power Analyses

“Rules of Thumb”

• usually based on the idea that “if you can’t find a significant 

effect with “this sample size”, then the effect probably isn’t large 

enough to care about

• most common in areas that don’t use effect sizes or power 

analysis – when you do these, you often discover that the rule “ 

works”  common effect sizes for that area are significant using 

that sample size

• so usually work well  -- within their research area on well-known 

phenomena (design, task/stim & DV combinations)!!!

• but be careful about “transplanting” rules-of-thumb across 

content areas or to new phenomena

Alternatives to Power Analyses, cont.

“Selecting S for significance”

• estimate the pairwise effect size, say r = .35

• using the correlation critical-value table, select 
a sample size for which that effect size will be 
significant

• r = .35 will be significant if df = 30 or S=32

Partial  critical-r Table

df        α = .05
20         .42    
25         .38    
30         .35
35         .33
40         .30   
45         .29    
50         .27   
60         .25 

What’s the power of 
this sample size ??

For r = .35 & S=30,

Power is only 50%

r →

↓ power

.35

.20 13

.30 18

.40 24

.50 30

.60 45

.70 52

.80 59

.90 78

So, this approach leads to 

very low power !



Why do these two approaches differ so much ?

The difference in “suggested S” is because the power analysis 

takes into account that the r-value of a sample drawn from a 

population with r = .361 might, by chance, be smaller than .361 !!!

Remember that we are testing RH: and making inferences about 

the population correlation !!!!

So, we want to be able to correctly decide that there is a 

correlation in the population (i.e., reject H0:), even if the sample 

we happen to draw has a smaller r-value than the population.

By the way… 

For a given r  the sample size for 80% power is about 2X the 
sample size for which that r will be significant (p = .05)

NHST Power “vs.” Parameter estimate stability

Stability  how much error is there in the sample-based estimate

of a parameter (correlation, regression weight, etc.) ?

Stability is based on …

• “quality” of the sample (sampling process & attrition)

• sample size
Std of r    =   1  /  √ (N-3), so …

N=50   r +/- .146        N=100  r +/- .101       N=200   r +/- .07 

N=300 r +/- .058        N=500  r +/- .045       N=1000 r +/- .031

NHST power  what’s the chances of rejecting a “false null” 

vs. making a Type II error?

Statistical power is based on…

• size of the effect involved (“larger effects are easier to find”)

• amount of power (probability of rejecting H0: if effect size is as
expected or larger) 

Partial Power Table (taken & extrapolated from Friedman, 1982)

r      .15   .20  .25  .30  .35  .40   .45    .50    .55    .60    .65    .70

power

.30     93    53   34   24   18   14    11       9       8        7      6      5

.40    132   74   47   33   24   19    15     12     10        8      7      6

.50    170   95   60   42   30   23    18     14     12        9      8      7

.60    257  143  90   62   45   34    24     20     16      13    11      9

.70    300  167 105  72   52   39    29     23     18      15    12    10

.80    343  191 120  82   59   44    33     26     20      16    13    11

.90    459  255 160 109  78   58    44     34     27      21    17    13

“Sufficient 

power” 

but “poor 

stability”

How can a sample have “sufficient power” but “poor stability”?

Notice it happens for large effect sizes!!  

e.g., For a population with r = .30  & a sample of  100 …

• Poor stability of r estimate    +/- 1 std is .20-.40

• Large enough to reject H0: that r = 0  power almost .90

The power table only tells us the sample size we need to reject 

H0: r=0!!  It does not tell us the sample size we need to have a 

good estimate of the population r !!!!!



So, what do you get out of all these analyses ???

mean -- most basic description/inference but…
difference    - DV scale can be difficult to generalize

- does not account for variability around the 
means or sample size

F-value -- integrates effect size, variability and sample size, but 
(without practice) is most useful to obtain p-value

d, r, etc. -- tells “how big” is the effect considering variability, but 
without considering sample size/power - easy to 
interpret metrics (r & d), but tells nothing about the 

likelihood of α or β

CI -- expresses mean difference taking variability and sample 
size (α) into account -- allows testing of non-nil H0: 
(“practical significance”

p-value -- probability that  a rejected H0: is a Type I error

post-hoc power analysis - prob that a retained H0: is 
a Type II error

effect 
size 
estimates 

assessing 
statistical 
conclusion 
error


