
Univariate Data Cleaning

Taking a "Look" at your data

Useful analyses for taking a look at the univariate properties of your variables are "Explore" …

Analyze àà  Descriptive Statistics àà  Explore

We'll use these to take a look at the variables in this data set.

The first part of the output tells you the sample size for each variable.

• Move the variables you
want to analyze into the
Dependent List window

• Statistics -- allows you to
select from various
summary statistics

• Plots -- lets you select
various graphical depicitons
of the data

• Options allows you to
determine how missing
values are treated

• Display lets you pick what
gets shown

• Here's the ones I like …

Case Processing Summary

95 100.0% 0 .0% 95 100.0%
95 100.0% 0 .0% 95 100.0%
95 100.0% 0 .0% 95 100.0%

X1
X2
X3

N Percent N Percent N Percent
Valid Missing Total

Cases



The mean and std can be used to test whether or
not the sample differs from a specific population
mean t =  (mean - pop mean) / Std.    df = n - 1

The 95% CI is given, which can be used to test
the same question.  We are 95% sure the true
population mean for X1 is somewhere between
69.5 and 79.8, so if we're looking to represent a
population with a mean in that interval, this could
be a good sample.

5% trimmed mean is found by tossing the top 5%
of the scores and the bottom 5% of the scores and
taking the mean of the middle 90% of the sample.

Notice the disparity of the mean, 5% trimmed
mean and median.  When they line up and differ
by this much, you can expect a skewed
distribution -- the mean will be toward the tail of
the skewed distribution.

The mean and standard deviation will be more or
less descriptive depending upon how "well-
behaved" the distribution is.  The greater the
skewing the less well the distribution meets the
assumptions of the mean and std computational
formulas.

The interquartile range tells the boundaries of the
middle 50% of the distribution.

The skewness is important to examine.  "0" means
a symmetrical distribution.  The skewness value
tells the direction of the tail of the asymmetrical
distribution.

Kurtosis tells the relative amount of distribution
that is in the middle vs. the tails of the distribution.
+ values means more of the distribution is in the
middle (and so the middle is really high --
leptokurtic) - values means more of the distribution
is in the tails (and so the middle is really flat --
platakurtic)

Standard errors are given for skewness and
kurtosis.  You can compute significance tests
(e.g.,  t = skewness / std err skewness), but they
haven't proved to be very useful.
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X1

X2
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Statistic Std. Error

Percentiles

31.6000 34.0000 42.0000 50.0000 55.0000 62.0000 67.6000
37.8000 39.0000 45.0000 54.0000 70.0000 94.0000 99.2000
23.0000 31.8000 59.0000 84.0000 93.0000 99.8000 103.0000

42.0000 50.0000 55.0000
45.0000 54.0000 69.5000
62.0000 84.0000 92.5000

X1
X2
X3
X1
X2
X3

Weighted
Average(Definition 1)

Tukey's Hinges

5 10 25 50 75 90 95
Percentiles

The percentile information includes the 25th and 75th percentile Tukey's hinges, which are the basis for the most commonly used
nonparametric approach to  outlier analysis.   These hinges have been shown to yield better outlier definitions than the standard
percentiles.



Tests of Normality

.199 95 .000 .867 95 .000

.061 95 .200* .991 95 .753

.195 95 .000 .902 95 .000

.260 95 .000 .789 95 .000

.277 95 .000 .683 95 .000

X1
X2
X3
X4
X5

Statistic df Sig. Statistic df Sig.
Kolmogorov-Smirnova Shapiro-Wilk

This is a lower bound of the true significance.*. 

Lilliefors Significance Correctiona. 

These are tests of whether the
sample fits a normal distribution.
They generally very sensitive --
meaning that the H0: (normal
distribution) is often rejected.

Other approaches to considering how "normal" the sample distribution are histograns and Q-Q plots. There are lots of other
ways of looking at the data.  SPSS also offers histograms with normal distribution overlays (in Freqencies or Charts),  Boxplots,
Stem-and-Leaf plots and others (e.g., de-trended Q-Q plots).  With play you will develop preferences -- but rarely do different
approaches reveal different things.  Both of these, along with mean-median comparison and the skewness value tell the same
story…
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What does it mean to "clean" data?

Let's consider skewness.   When a variable shows "appreciable" skewness we may want to un-skew it, for several reasons:

1. Skewing will distort the mean (draw it toward the tail) and inflate the std.  Thus, descriptions of the sample and inferences to the
target population are less accurate.

2. Skewing can distort bivariate statistics
• For t-tests and ANOVA -- means comparisons

• Means may not be "representative" measures of central tendency for skewed distributions, so comparisons of them
lose meaningfulness.  Depending upon the relative direction of skewing of the groups being compared, this can lead to
an increased likelihood of Type I, II or III error.

• Sum of squares, variance, std, sem and related error terms are all inflated, decreasing the power of significance tests
and increasing Type II error (misses)

• For correlations
• Skewing, especially if variables are skewed in opposite directions, can lead to an underestimate of the population

correlation and Type II errors of r or b (simple regression weight).
3. Multivariate analyses that are based in either of these analyses share related problems

Let's also consider outliers.   When a variable has outliers we may want to deal with them, for several reasons:

1. Outliers will distort the mean (draw it toward the outlier) and inflate the std.  Thus, descriptions of the sample and inferences to
the target population are less accurate.

2. Outliers can distort bivariate statistics
• For t-tests and ANOVA -- means comparisons

• Means may not be "representative" measures of central tendency, so comparisons of them lose meaningfulness.
Depending upon the relative values of the outliers of the groups being compared, this can lead to an increased
likelihood of Type I, II or III error.

• Sum of squares, variance, std, sem and related error terms are all inflated, decreasing the power of significance tests
and increasing Type II error (misses)

• For correlations
• Outliers can change the r, and/or a values.

3. Multivariate analyses that are based in either of these analyses share related problems

Notice anything ???
Skewness and outliers have very similar detrimental effects upon univariate, bivariate and multivariate analyses --

producing results that don't describe that's going on in the population.

What we'll do about it

How to "un-skew" a distribution  -- depends upon how skewed it is…
• The most common transformations and when to apply them -- be sure all X values are positive for all transformations

• Square root   √√X skewness .8 - 1.5
• Base-10 Log  log10X skewness  1.0 - 3.0
• Inverse 1/X    skewness 2.0 - 4.0
• The variability in "advice" about when to apply which is caused in part because the skewness isn't that great of an

index of which transformation will work best -- the actual shape of the distribution for a given skewness can have a lot
to do with what is the best transformation

• Please note, these transformations are for positive (+) skewing only
• Negative (-) skewing is handled by first "transposing" the distribution  ( (max+1) - X)  and then apply transformation

What to do about "outliers"
• Identify them…

• For decades (and still sometimes today) common advice was to toss any score that had a corresponding Z-value of
+/- 2-3, depending upon whom you believed

• One difficulty with this is that outliers increase the std, and so "outliers can hide themselves".
• In the late 70's, the use of nonparametric statistics for identifying outliers was championed.  The reasoning was that

nonparametric measures of variability (variations on the interquartile range) would be disrupted less by outliers than is the
std.

• What to do with them -- opinions vary
• "Trim" them -- delete them from the dataset
• "Windsorize" them -- replace the "too extreme" value with the "most extreme acceptable value"
• this has the advantage of not tossing any data -- large/small values are still large/small, but less likely to disrupt the mean

and std estimates and statistics that depend upon them



Please note:
When deciding whether to transform and/or perform outlier analyses, it is useful to keep in mind that the skewness statistic,

by itself, won't tell which of these is best-suited to improve your sample distribution.  The reason for this is that both distributional
skewing and asymmetrical outliers can produce high skewness values.  So, it is important to take a look at the actual distribution
before planning what to do.

Working with X1 - X5

Let's start with X1  -- Statistics and graphs are shown above.  Not much to do with this one.  Very low skewness value, Normal
distribution tests are null, the histogram and the Q-Q plot look good.  Before decide we can safely use the mean and std of this
distribution we should check for outliers.

To do this we compute the upper and lower bound of "non-extreme" values and compare those with the maximum and minimum
values in the distribution.  We will use the 75% and 25% Tukey Hinges for these calculations.

Upper bound =   75%  +  1.5 * (75% - 25%)   =   55  +  1.5 * (55 - 42)   =  55 +  19.5   =  74.5

Lower bound =   25%   -  1.5 * (75% - 25%)   =   42   -  1.5 * (55 - 42)   =  42  -  19.5   =  22.5

With  a maximum of 77 and a minimum of 26, we can see that there are "too large" but not "too small" outliers.  As mentioned, we
can "trim" or "Windsorize" the outliers.  Here's how to do each.

Trimming = turning "outliers" into "missing values".

Transform àà   Recode àà   Into Different Variables

Here are the "final" stats on X1TRIM --  notice that N = 94

Notice the three portions to the recode:
1. Lowest thru smallest acceptable value
2. Largest acceptable value thru highest
3. All other values are copied

Always recode into a different variable, so
the original data values are intact!!

Descriptive Statistics

94 26.00 74.00 48.9362 10.24727 -.047 .249
94

X1TRIM
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness



Windsorizing = turning "outliers" into "most extreme acceptable scores"

Here are the final stats on X1WIND  -- notice that N = 95

As was found here.  Trimming and Windsorizing lead to very similar results with the data are "well-behaved".

On to X2 -- Statistics and graphs are shown above.  There is a definite positive skew to this variable. The shape seen in the
histogram and Q-Q plot seem to correspond the skewness value -- no discontinuous sub-distributions, etc.

The question is, how skewed does a distribution need to be to warrant transformation?  The usual skewness cutoffs vary from .7-.9,
so this is "skewed enough" to transform.

Transformation àà  Compute

The SQRT()  and LG10() are the two
nonlinear transformation functions
provided by SPSS that you will use most
often for "symmetrizing" you data.

Another Target Variable  x2_log10

used the Numeric Expression  LG10(x2)

The results of these transformations
highlight a common dilemma.

Again there are three parts
1. Lowest thru smallest acceptable value
2. Largest acceptable value thru highest
3. All other values are copied

But now "outliers" are changed to "acceptable"
values rather than made "missing".

Descriptive Statistics

95 26.00 74.50 49.2053 10.52467 .034 .247
95

X1WIND
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness



Checking X2_SQRT for outliers

Upper bound =   75%  +  1.5 * (75% - 25%)   =   8.3366  +  1.5 * (8.3366 - 6.7082)   =  8.3366  +  2.4426   =   10.7793
Lower bound =   25%   -  1.5 * (75% - 25%)   =   6.7082   -  1.5 * (8.3366 - 6.7082)   =  6.7082   -  2.4426   =   4.2656

After transformation we have no outliers, since the min and max are "inside" of the outlier bounds.

Please note:   Unlike X1, X2 is no longer in its original measured scale, but is the sqrt of that scale.  Therefore, means and stds will
be harder to think about.
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Which transformation to use??

The usual advice is to use the
less extreme transformation that
gets skewness into the
acceptable range.

There's another reason to limit the
use of log transforms.  The sum
or two log transformed variables
is the same as the product of the
original variables.  So, the
weighted sum or two log
transformed variables is a
weighted interaction between
them, not usually what we intend.

X2_log10 has a
skewness of .368

Percentiles

6.1481 6.2450 6.7082 7.3485 8.3666 9.6954 9.9599

6.7082 7.3485 8.3366

X2_SQRT

X2_SQRT

Weighted
Average(Definition 1)
Tukey's Hinges

5 10 25 50 75 90 95
Percentiles

Descriptive Statistics

95 5.10 10.58 7.5904 1.22342 .699 .247
95

X2_SQRT
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness



Next is X3 -- Statistics and graphs are shown above.  There is a definite negative skew to this variable. Again, the shape seen in
the histogram and Q-Q plot seem to correspond the skewness value -- no discontinuous sub-distributions, etc.

Because the skewing is negative, we must transpose before transforming, so the compute window would include…

X4 and X5 show another common "situation"

Since 106 was the maximum for
X3, subtracting from 107
guarantees that all the values are
positive (can't take SQRT of 0 or
negative values.

Descriptive Statistics

95 1.00 10.20 5.2701 2.14484 .464 .247
95

X3_TSQ
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness

The skewness of the transformed
variable is within acceptable bounds,
so we wouldn't try more extreme
transformations.  Plus, the skew is
now positive, like X2.  The problems
with skewness are lessened if all the
variables are similarly skewed (say all
+).

We would then continue with an
outlier check.

Descriptive Statistics

95 30.00 173.00 65.9053 30.71457 1.631 .247
95 31.00 97.00 53.9263 13.19271 1.558 .247
95

X4
X5
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness
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Both are positively skewed, and both probably have several "too large" outliers.  But they have different distribution shapes.

X4, being continuous, will probably clean up better by transforming, then re-checking for outliers.  Whereas X5, should have its
outliers cleaned up, and then be re-checked for skewness.



Let's look at the results from square root and log transforms of both (even though we're pretty sure that isn't the best thing to do with
X5).

The sqrt transforms "aren't enough", but the log transforms bring the skewness into an acceptable range.  But check the
histograms…

Upper bound =   75%  +  1.5 * (75% - 25%)   =   59  +  1.5 * (59  -  45)   =  59  +  21  =  80
Lower bound =   25%   -  1.5 * (75% - 25%)   =   45   -  1.5 * (59  -  45)   =  45   -  21  =  23

We have to decide whether to trim or Windsorize.   If we Windsorize the "outrigger" of values will still be noncontiguous with the rest
of the distribution.  When this happens, it is very important to check up on these values and try to determine if they are collection,
coding or entry errors or if they comprise an important sub-population that should be studied separately.  Since these are simulated
data, none of these evaluations are possible, and I'm going to trim the "too large" outliers.

I used Recode into Different variables to make X5trim using the Oldà New    lowest thru 80 à copy  ELSE à SYSMIS

An outlier check on X4_LOG revealed no outliers, so the "cleaned"  versions of these variables have the following stats.  You can
see that trimming X5 was much more effective than was transforming it.

Descriptive Statistics

95 5.48 13.15 7.9408 1.69699 1.078 .247
95 5.57 9.85 7.2949 .84762 1.098 .247
95 1.48 2.24 1.7824 .16964 .639 .247
95 1.49 1.99 1.7206 .09692 .635 .247
95

X4_SQRT
X5_SQRT
X4_LOG
X5_LOG
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness
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X4_LOG looks better, but the
body of X5_LOG looks slightly
negatively skewed, but off set
by obvious outliers.

Let's go back and start over
with X5, cleaning up the
outliers first and then re-
assessing the skewness.

Percentiles

36.0000 41.6000 45.0000 52.0000 59.0000 67.4000 95.0000

45.5000 52.0000 59.0000

X5

X5

Weighted
Average(Definition 1)
Tukey's Hinges

5 10 25 50 75 90 95
Percentiles

Descriptive Statistics

95 1.48 2.24 1.7824 .16964 .639 .247
90 31.00 72.00 51.5889 8.87731 .110 .254
90

X4_LOG
X5TRIM
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
N Minimum Maximum Mean Std.

Deviation
Skewness


