# **Univariate Data Cleaning**

• Move the variables you

# Taking a "Look" at your data

Useful analyses for taking a look at the univariate properties of your variables are "Explore" ...



| Explore     Image: gradient content conte | <ul> <li>want to analyze into the Dependent List window</li> <li>Statistics allows you to select from various summary statistics</li> <li>Plots lets you select various graphical depicitons of the data</li> <li>Options allows you to determine how missing values are treated</li> <li>Display lets you pick what gets shown</li> <li>Here's the ones I like</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Explore: Statistics       Image: Confidence Interval for Mean: 95                                                                                                                                                                                                                                                                                                                                               | Explore: Plots       Image: Continue         Boxplots       Descriptive         Factor levels together       Image: Stem-and-leaf         Dependents together       Image: Histogram         Image: None       Image: Histogram |

We'll use these to take a look at the variables in this data set.

The first part of the output tells you the sample size for each variable.

|    | Cases |         |      |         |       |         |  |  |  |  |
|----|-------|---------|------|---------|-------|---------|--|--|--|--|
|    | Valid |         | Miss | sing    | Total |         |  |  |  |  |
|    | Ν     | Percent | Ν    | Percent | Ν     | Percent |  |  |  |  |
| X1 | 95    | 100.0%  | 0    | .0%     | 95    | 100.0%  |  |  |  |  |
| X2 | 95    | 100.0%  | 0    | .0%     | 95    | 100.0%  |  |  |  |  |
| X3 | 95    | 100.0%  | 0    | .0%     | 95    | 100.0%  |  |  |  |  |

# **Case Processing Summary**

#### Descriptives

|    |                     |             | Statistic | Std. Error |
|----|---------------------|-------------|-----------|------------|
| X1 | Mean                |             | 49.2316   | 1.08666    |
|    | 95% Confidence      | Lower Bound | 47.0740   |            |
|    | Interval for Mean   | Upper Bound | 51.3892   |            |
|    | 5% Trimmed Mean     |             | 49.1082   |            |
|    | Median              |             | 50.0000   |            |
|    | Variance            |             | 112.180   |            |
|    | Std. Deviation      |             | 10.59150  |            |
|    | Minimum             |             | 26.00     |            |
|    | Maximum             |             | 77.00     |            |
|    | Range               |             | 51.00     |            |
|    | Interquartile Range |             | 13.0000   |            |
|    | Skewness            |             | .074      | .247       |
|    | Kurtosis            |             | 126       | .490       |
| X2 | Mean                |             | 59.0947   | 2.01806    |
|    | 95% Confidence      | Lower Bound | 55.0878   |            |
|    | Interval for Mean   | Upper Bound | 63.1016   |            |
|    | 5% Trimmed Mean     |             | 57.9678   |            |
|    | Median              |             | 54.0000   |            |
|    | Variance            |             | 386.895   |            |
|    | Std. Deviation      |             | 19.66965  |            |
|    | Minimum             |             | 26.00     |            |
|    | Maximum             |             | 112.00    |            |
|    | Range               |             | 86.00     |            |
|    | Interquartile Range |             | 25.0000   |            |
|    | Skewness            |             | .989      | .247       |
|    | Kurtosis            |             | .206      | .490       |
| X3 | Mean                |             | 74.6737   | 2.58900    |
|    | 95% Confidence      | Lower Bound | 69.5332   |            |
|    | Interval for Mean   | Upper Bound | 79.8142   |            |
|    | 5% Trimmed Mean     |             | 76.4415   |            |
|    | Median              |             | 84.0000   |            |
|    | Variance            |             | 636.775   |            |
|    | Std. Deviation      |             | 25.23441  |            |
|    | Minimum             |             | 3.00      |            |
|    | Maximum             |             | 106.00    |            |
|    | Range               |             | 103.00    |            |
|    | Interquartile Range |             | 34.0000   |            |
|    | Skewness            |             | -1.113    | .247       |
|    | Kurtosis            |             | .289      | .490       |

The mean and std can be used to test whether or not the sample differs from a specific population mean t = (mean - pop mean) / Std. df = n - 1

The 95% CI is given, which can be used to test the same question. We are 95% sure the true population mean for X1 is somewhere between 69.5 and 79.8, so if we're looking to represent a population with a mean in that interval, this could be a good sample.

5% trimmed mean is found by tossing the top 5% of the scores and the bottom 5% of the scores and taking the mean of the middle 90% of the sample.

Notice the disparity of the mean, 5% trimmed mean and median. When they line up and differ by this much, you can expect a skewed distribution -- the mean will be toward the tail of the skewed distribution.

The mean and standard deviation will be more or less descriptive depending upon how "wellbehaved" the distribution is. The greater the skewing the less well the distribution meets the assumptions of the mean and std computational formulas.

The interquartile range tells the boundaries of the middle 50% of the distribution.

The skewness is important to examine. "0" means a symmetrical distribution. The skewness value tells the direction of the tail of the asymmetrical distribution.

Kurtosis tells the relative amount of distribution that is in the middle vs. the tails of the distribution. + values means more of the distribution is in the middle (and so the middle is really high -leptokurtic) - values means more of the distribution is in the tails (and so the middle is really flat -platakurtic)

Standard errors are given for skewness and kurtosis. You can compute significance tests (e.g., t = skewness / std err skewness), but they haven't proved to be very useful.

|                          |         | Percentiles |         |         |         |         |          |  |
|--------------------------|---------|-------------|---------|---------|---------|---------|----------|--|
|                          | 5       | 10          | 25      | 50      | 75      | 90      | 95       |  |
| Weighted X1              | 31.6000 | 34.0000     | 42.0000 | 50.0000 | 55.0000 | 62.0000 | 67.6000  |  |
| Average(Definition 1) X2 | 37.8000 | 39.0000     | 45.0000 | 54.0000 | 70.0000 | 94.0000 | 99.2000  |  |
| Х3                       | 23.0000 | 31.8000     | 59.0000 | 84.0000 | 93.0000 | 99.8000 | 103.0000 |  |
| Tukey's Hinges X1        |         |             | 42.0000 | 50.0000 | 55.0000 |         |          |  |
| X2                       |         |             | 45.0000 | 54.0000 | 69.5000 |         |          |  |
| Х3                       |         |             | 62.0000 | 84.0000 | 92.5000 |         |          |  |

The percentile information includes the  $25^{m}$  and  $75^{m}$  percentile Tukey's hinges, which are the basis for the most commonly used nonparametric approach to outlier analysis. These hinges have been shown to yield better outlier definitions than the standard percentiles.

#### Percentiles

#### **Tests of Normality**

|    | Kolm      | nogorov-Smii | rnov <sup>a</sup> | Shapiro-Wilk |    |      |
|----|-----------|--------------|-------------------|--------------|----|------|
|    | Statistic | df           | Sig.              | Statistic    | df | Sig. |
| X1 | .199      | 95           | .000              | .867         | 95 | .000 |
| X2 | .061      | 95           | .200*             | .991         | 95 | .753 |
| X3 | .195      | 95           | .000              | .902         | 95 | .000 |
| X4 | .260      | 95           | .000              | .789         | 95 | .000 |
| X5 | .277      | 95           | .000              | .683         | 95 | .000 |

These are tests of whether the sample fits a normal distribution. They generally very sensitive -- meaning that the H0: (normal distribution) is often rejected.

\*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Other approaches to considering how "normal" the sample distribution are histograns and Q-Q plots. There are lots of other ways of looking at the data. SPSS also offers histograms with normal distribution overlays (in Freqencies or Charts), Boxplots, Stem-and-Leaf plots and others (e.g., de-trended Q-Q plots). With play you will develop preferences -- but rarely do different approaches reveal different things. Both of these, along with mean-median comparison and the skewness value tell the same storv...













# What does it mean to "clean" data?

Let's consider skewness. When a variable shows "appreciable" skewness we may want to un-skew it, for several reasons:

- 1. Skewing will distort the mean (draw it toward the tail) and inflate the std. Thus, descriptions of the sample and inferences to the target population are less accurate.
- 2. Skewing can distort bivariate statistics
  - For t-tests and ANOVA -- means comparisons
    - Means may not be "representative" measures of central tendency for skewed distributions, so comparisons of them lose meaningfulness. Depending upon the relative direction of skewing of the groups being compared, this can lead to an increased likelihood of Type I, II or III error.
    - Sum of squares, variance, std, sem and related error terms are all inflated, decreasing the power of significance tests and increasing Type II error (misses)
  - For correlations
    - Skewing, especially if variables are skewed in opposite directions, can lead to an underestimate of the population correlation and Type II errors of r or b (simple regression weight).
- 3. Multivariate analyses that are based in either of these analyses share related problems

Let's also consider outliers. When a variable has outliers we may want to deal with them, for several reasons:

- 1. Outliers will distort the mean (draw it toward the outlier) and inflate the std. Thus, descriptions of the sample and inferences to the target population are less accurate.
- 2. Outliers can distort bivariate statistics
  - For t-tests and ANOVA -- means comparisons
    - Means may not be "representative" measures of central tendency, so comparisons of them lose meaningfulness. Depending upon the relative values of the outliers of the groups being compared, this can lead to an increased likelihood of Type I, II or III error.
    - Sum of squares, variance, std, sem and related error terms are all inflated, decreasing the power of significance tests and increasing Type II error (misses)
  - For correlations
  - Outliers can change the r, and/or a values.
- 3. Multivariate analyses that are based in either of these analyses share related problems

# Notice anything ???

Skewness and outliers have very similar detrimental effects upon univariate, bivariate and multivariate analyses -- producing results that don't describe that's going on in the population.

# What we'll do about it

How to "un-skew" a distribution -- depends upon how skewed it is...

- The most common transformations and when to apply them -- be sure all X values are positive for all transformations
  - Square root
     ÖX
     skewness .8 1.5
    - Base-10 Log log<sub>10</sub>X skewness 1.0 3.0
  - Inverse 1/X skewness 2.0 4.0
  - The variability in "advice" about when to apply which is caused in part because the skewness isn't that great of an index of which transformation will work best -- the actual shape of the distribution for a given skewness can have a lot to do with what is the best transformation
- Please note, these transformations are for positive (+) skewing only
- Negative (-) skewing is handled by first "transposing" the distribution ((max+1) X) and then apply transformation

# What to do about "outliers"

Identify them...

.

- For decades (and still sometimes today) common advice was to toss any score that had a corresponding Z-value of +/- 2-3, depending upon whom you believed
- One difficulty with this is that outliers increase the std, and so "outliers can hide themselves".
- In the late 70's, the use of nonparametric statistics for identifying outliers was championed. The reasoning was that nonparametric measures of variability (variations on the interquartile range) would be disrupted less by outliers than is the std.
- What to do with them -- opinions vary
  - "Trim" them -- delete them from the dataset
  - "Windsorize" them -- replace the "too extreme" value with the "most extreme acceptable value"
  - this has the advantage of not tossing any data -- large/small values are still large/small, but less likely to disrupt the mean and std estimates and statistics that depend upon them

#### Please note:

When deciding whether to transform and/or perform outlier analyses, it is useful to keep in mind that the skewness statistic, by itself, won't tell which of these is best-suited to improve your sample distribution. The reason for this is that both distributional skewing and asymmetrical outliers can produce high skewness values. So, it is important to take a look at the actual distribution before planning what to do.

### Working with X1 - X5

Let's start with X1 -- Statistics and graphs are shown above. Not much to do with this one. Very low skewness value, Normal distribution tests are null, the histogram and the Q-Q plot look good. Before decide we can safely use the mean andstd of this distribution we should check for outliers.

To do this we compute the upper and lower bound of "non-extreme" values and compare those with the maximum and minimum values in the distribution. We will use the 75% and 25% Tukey Hinges for these calculations.

Upper bound = 75% + 1.5\*(75% - 25%) = 55 + 1.5\*(55 - 42) = 55 + 19.5 = 74.5Lower bound = 25% - 1.5\*(75% - 25%) = 42 - 1.5\*(55 - 42) = 42 - 19.5 = 22.5

With a maximum of 77 and a minimum of 26, we can see that there are "too large" but not "too small" outliers. As mentioned, we can "trim" or "Windsorize" the outliers. Here's how to do each.

# Trimming = turning "outliers" into "missing values".

### Transform → Recode → Into Different Variables

| Image: Second end of the second | Always reco<br>the original o                                                                                              | de into a different variable, so<br>lata values are intact!!                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| ★         ×4         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recode into Different Variables: 0                                                                                         | id and New Values                                                                                           |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C Value:                                                                                                                   | New Value     Value     Value     C Value:     C System-missing     C Copy old value(s)                     |
| Old and New Values       OK     Paste       Beset     Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | System- or user-missing     System- or user-missing     Range:     System- or user-missing     C Range:     Lowest through | Old> New:       Add       Z45       Change       Eemove                                                     |
| <ol> <li>Notice the three portions to the recode:</li> <li>Lowest thru smallest acceptable value</li> <li>Largest acceptable value thru highest</li> <li>All other values are copied</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C Range:<br>hrough highest<br>C All other values                                                                           | Output variables are strings Width: 8     Convert numeric strings to numbers (5>5)     Continue Cancel Help |

Here are the "final" stats on X1TRIM -- notice that N = 94

|                    | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skew      | ness       |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |
| X1TRIM             | 94        | 26.00     | 74.00     | 48.9362   | 10.24727  | 047       | .249       |
| Valid N (listwise) | 94        |           |           |           |           |           |            |

#### **Descriptive Statistics**

# Windsorizing = turning "outliers" into "most extreme acceptable scores"

| Recode into Different Variables                                                   | ×                          |                                                         |
|-----------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------|
|                                                                                   | able                       | and New Values                                          |
| (₩) x2_sqrt<br>(₩) x2_log10                                                       | Old Value                  | New Value                                               |
| ★ x1trim                                                                          | • <u>V</u> alue:           | Value: C System-missing     C Copy old value(s)         |
| <u>O</u> ld and New Values                                                        | C System- or user-missing  | Old> New:                                               |
| OK <u>P</u> aste <u>R</u> eset Cancel He                                          | C Range:                   | Add Lowest thru 22.49> 22.5<br>74.51 thru Highest> 74.5 |
| Again there are three parts                                                       | C Range:<br>Lowest through | Erange<br>Remove                                        |
| 1. Lowest thru smallest acceptable value                                          | C Range:                   | Dutput variables are strings Width: 8                   |
| <ol> <li>All other values are copied</li> </ol>                                   | through highest            | Convert numeric strings to numbers ('5'>5)              |
| But now "outliers" are changed to "acceptable" values rather than made "missing". | C All <u>o</u> ther values | Continue Cancel Help                                    |

# Here are the final stats on X1WIND -- notice that N = 95

#### Descriptive Statistics

|                    | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skewness  |            |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |
| X1WIND             | 95        | 26.00     | 74.50     | 49.2053   | 10.52467  | .034      | .247       |
| Valid N (listwise) | 95        |           |           |           |           |           |            |

As was found here. Trimming and Windsorizing lead to very similar results with the data are "well-behaved".

**On to X2** -- Statistics and graphs are shown above. There is a definite positive skew to this variable. The shape seen in the histogram and Q-Q plot seem to correspond the skewness value -- no discontinuous sub-distributions, etc.

The question is, how skewed does a distribution need to be to warrant transformation? The usual skewness cutoffs vary from .7-.9, so this is "skewed enough" to transform.

### Transformation → Compute

| <mark>- R</mark> Compute Varial                                                                | ble |                                                                                | × |
|------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------|---|
| Target Variable:<br>x2_sqrt<br>Type&Label                                                      | =   | Numeric <u>E</u> xpression:<br>SQRT(x2 <b>j</b>                                | × |
| <ul> <li>✤ x3</li> <li>✤ x1</li> <li>♠ x2</li> <li>♠ x4</li> <li>♠ x5</li> <li>♠ x6</li> </ul> |     | +       <>       7       8       9       Eunctions:       ▲         -       <= |   |

The SQRT() and LG10() are the two nonlinear transformation functions provided by SPSS that you will use most often for "symmetrizing" you data.

Another Target Variable x2\_log10

used the Numeric Expression LG10(x2)

The results of these transformations highlight a common dilemma.



# Checking X2\_SQRT for outliers

#### **Descriptive Statistics**

|                    | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skew      | ness       |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |
| X2_SQRT            | 95        | 5.10      | 10.58     | 7.5904    | 1.22342   | .699      | .247       |
| Valid N (listwise) | 95        |           |           |           |           |           |            |

#### Percentiles

|                                          |        | Percentiles |        |        |        |        |        |
|------------------------------------------|--------|-------------|--------|--------|--------|--------|--------|
|                                          | 5      | 10          | 25     | 50     | 75     | 90     | 95     |
| Weighted X2_SQRT<br>Average(Definition 1 | 6.1481 | 6.2450      | 6.7082 | 7.3485 | 8.3666 | 9.6954 | 9.9599 |
| Tukey's Hinges X2_SQRT                   |        |             | 6.7082 | 7.3485 | 8.3366 |        |        |

Upper bound = 75% + 1.5\*(75% - 25%) = 8.3366 + 1.5\*(8.3366 - 6.7082) = 8.3366 + 2.4426 = 10.7793Lower bound = 25% - 1.5\*(75% - 25%) = 6.7082 - 1.5\*(8.3366 - 6.7082) = 6.7082 - 2.4426 = 4.2656

After transformation we have no outliers, since the min and max are "inside" of the outlier bounds.

Please note: Unlike X1, X2 is no longer in its original measured scale, but is the sqrt of that scale. Therefore, means and stds will be harder to think about.

**Next is X3** -- Statistics and graphs are shown above. There is a definite negative skew to this variable. Again, the shape seen in the histogram and Q-Q plot seem to correspond the skewness value -- no discontinuous sub-distributions, etc.

Because the skewing is negative, we must transpose before transforming, so the compute window would include...

| arget Variable:        |   | Numeric Expression:                 |          |
|------------------------|---|-------------------------------------|----------|
| <3_tsq                 | = | SQRT(107 - x3)                      | 4        |
| Type& <u>L</u> abel    |   |                                     |          |
| <u>^</u> 2             |   |                                     | <u>×</u> |
| ₩ x3<br>₩ x1           |   | + < > 7 8 9 Eunctions:              |          |
|                        |   | . <= >= 4 5 6 ABS(numexpr)          |          |
| 🗰 x4                   |   | × = ~= 1 2 3 ANY(test,value,value,) |          |
| 🗰 x5                   |   | ARSIN(numexpr)                      |          |
| 🛞 х6                   |   | CDFNORM(zvalue)                     |          |
| <pre> # x2_sqrt </pre> |   |                                     | •        |
| x2_log10               |   |                                     | 18       |
| 🗰 x1 trim              |   |                                     |          |
| 🗰 x1 wind              |   |                                     |          |

Since 106 was the maximum for X3, subtracting from 107 guarantees that all the values are positive (can't take SQRT of 0 or

The skewness of the transformed variable is within acceptable bounds, so we wouldn't try more extreme transformations. Plus, the skew is now positive, like X2. The problems with skewness are lessened if all the variables are similarly skewed (say all +).

We would then continue with an outlier check.

#### **Descriptive Statistics**

|                    | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skew      | /ness      |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |
| X3_TSQ             | 95        | 1.00      | 10.20     | 5.2701    | 2.14484   | .464      | .247       |
| Valid N (listwise) | 95        |           |           |           |           |           |            |

# X4 and X5 show another common "situation"

|                    | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skew      | ness       |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |
| X4                 | 95        | 30.00     | 173.00    | 65.9053   | 30.71457  | 1.631     | .247       |
| X5                 | 95        | 31.00     | 97.00     | 53.9263   | 13.19271  | 1.558     | .247       |
| Valid N (listwise) | 95        |           |           |           |           |           |            |



Both are positively skewed, and both probably have several "too large" outliers. But they have different distribution shapes.

X4, being continuous, will probably clean up better by transforming, then re-checking for outliers. Whereas X5, should have its outliers cleaned up, and then be re-checked for skewness.

#### **Descriptive Statistics**

Let's look at the results from square root and log transforms of both (even though we're pretty sure that isn't the best thing to do with X5).

| Descriptive Statistics |           |           |           |           |           |           |            |  |  |  |
|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|--|--|--|
|                        | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skewness  |            |  |  |  |
|                        | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |  |  |  |
| X4_SQRT                | 95        | 5.48      | 13.15     | 7.9408    | 1.69699   | 1.078     | .247       |  |  |  |
| X5_SQRT                | 95        | 5.57      | 9.85      | 7.2949    | .84762    | 1.098     | .247       |  |  |  |
| X4_LOG                 | 95        | 1.48      | 2.24      | 1.7824    | .16964    | .639      | .247       |  |  |  |
| X5_LOG                 | 95        | 1.49      | 1.99      | 1.7206    | .09692    | .635      | .247       |  |  |  |
| Valid N (listwise)     | 95        |           |           |           |           |           |            |  |  |  |

The sqrt transforms "aren't enough", but the log transforms bring the skewness into an acceptable range. But check the histograms...



X4\_LOG looks better, but the body of X5\_LOG looks slightly negatively skewed, but off set by obvious outliers.

Let's go back and start over with X5, cleaning up the outliers first and then reassessing the skewness.



Percentiles

|                                      |         | Percentiles |         |         |         |         |         |  |  |
|--------------------------------------|---------|-------------|---------|---------|---------|---------|---------|--|--|
|                                      | 5       | 10          | 25      | 50      | 75      | 90      | 95      |  |  |
| Weighted X5<br>Average(Definition 1) | 36.0000 | 41.6000     | 45.0000 | 52.0000 | 59.0000 | 67.4000 | 95.0000 |  |  |
| Tukey's Hinges X5                    |         |             | 45.5000 | 52.0000 | 59.0000 |         |         |  |  |

Upper bound = 75% + 1.5\*(75% - 25%) = 59 + 1.5\*(59 - 45) = 59 + 21 = 80Lower bound = 25% - 1.5\*(75% - 25%) = 45 - 1.5\*(59 - 45) = 45 - 21 = 23

We have to decide whether to trim or Windsorize. If we Windsorize the "outrigger" of values will still be noncontiguous with the rest of the distribution. When this happens, it is very important to check up on these values and try to determine if they are collection, coding or entry errors or if they comprise an important sub-population that should be studied separately. Since these are simulated data, none of these evaluations are possible, and I'm going to trim the "too large" outliers.

I used Recode into Different variables to make X5trim using the Old→ New lowest thru 80 → copy ELSE → SYSMIS

An outlier check on X4\_LOG revealed no outliers, so the "cleaned" versions of these variables have the following stats. You can see that trimming X5 was much more effective than was transforming it.

|                    | Ν         | Minimum   | Maximum   | Mean      | Std.      | Skew      | /ness      |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
|                    | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Std. Error |
| X4_LOG             | 95        | 1.48      | 2.24      | 1.7824    | .16964    | .639      | .247       |
| X5TRIM             | 90        | 31.00     | 72.00     | 51.5889   | 8.87731   | .110      | .254       |
| Valid N (listwise) | 90        |           |           |           |           |           |            |

#### **Descriptive Statistics**