
 Meta-Analyses: Combining, Comparing & Modeling ESs inverse variance weight weighted mean ES – where it starts fixed v. random effect models fixed effects ES mean, tests & Cls heterogeneity analyses single-variable fixed effects comparison model – "Q" modeling study attributes related to ES fixed effects modeling random effects modeling 	 The Inverse Variance Weight An ES based on 400 participants is assumed to be a "better" estimate of the population ES than one based on 50 participants. So, ESs from larger studies should "count for more" than ESs from smaller studies! Original idea was to weight each ES by its sample size. Hedges suggested an alternative we want to increase the precision of our ES estimates he showed that weighting ESs by their inverse variance minimizes the variance of their sum (& mean), and so, minimizes the Standard Error of Estimate (SE) the resulting smaller Standard Error leads to narrower Cls and more powerful significance tests!!! The optimal weight is 1/SE²
Calculating Standard Error & Inverse Variance Weights for Different Effect Sizes	
d *** $se = \sqrt{\frac{n_1 + n_2}{n_1 n_2} + \frac{\overline{ES}_{sm}}{2(n_1 + n_2)}}$ $w = \frac{1}{se^2}$	
$\mathbf{r^{\star\star\star}} \qquad \qquad se = \sqrt{\frac{1}{n-3}} \qquad \qquad w = n-3$	
Odds Ratio*** $se = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} \qquad w = \frac{1}{se^2}$	
*** Note: Applied to ESs that have been transformed to normal distn	

Weighted Mean Effect Size

The most basic "meta analysis" is to find the average ES of the studies representing the population of studies of "the effect".

The formula is pretty simple – the sum of the weighted ESs, divided by the sum of the weightings.

But much has happened to get to here!

- · select & obtain studies to include in meta analyis
- · code study for important attributes
- extract d, d_{gain}, r, OR
- ND transformation of d, r, or OR
- · perhaps adjust for unreliability, range restriction or outliers
- Note: we're about to assume there is a single population of studies represented & that all have the same effect size, except for sampling error !!!!!

Weighted Mean Effect Size

One more thing...

Fixed Effects vs. Random Effects Meta Analysis

Alternative ways of computing and testing the mean effect sizes.

Which you use depends on....

How you conceptualize the source(s) of variation among the study effect sizes – why don't all the studies have the same effect size???

And leads to ... How you will compute the estimate and the error of estimate.

Which influences...

The statistical results you get!

Fixed Effect Models

•Assume each study in the meta-analysis used the same (fixed) operationalizations of the design conditions & same external validity elements (population, setting, task/stimulus)

(Some say they also assume that the IV in each study is manipulated (fixed), so the IV in every study is identical.)

•Based on this, the studies in the meta analysis are assumed to be drawn from a population of studies that all have the same effect size, except for sampling error

•So, the sampling error is inversely related to the size of the sample

 which is why the effect size of each study is weighted by the inverse variance weight (which is computed from sample size)

$$se = \sqrt{\frac{1}{n-3}}$$
 $w_i = \frac{1}{se_i^2}$

Random Effect Models

•Assume different studies in the meta-analysis used different operationalizations of the design conditions, and/or different external validity elements (population, setting, task/stimulus)

•Based on this, studies in the meta analysis are assumed to be drawn from a population of studies that have different effect sizes for two reasons:

- · Sampling variability
- "Real" effect size differences between studies caused by the differences in operationalizations and external validity elements

•So, the sampling error is inversely related to the size of the sample and directly related to the variability across the population of studies

• Compute the $se = \sqrt{\frac{1}{n-3}}$ $\hat{v}_{\theta} = \frac{Q_r - k - 1}{\sum w - \left(\frac{\sum w^2}{\sum w}\right)}$ $w_i = \frac{1}{se_i^2 + \hat{v}_{\theta}}$ inverse weight differently

Computing Fixed Effects weighted mean ES

This example will use "r".

Step 1

There is a row or case for each effect size.

The study/analysis each effect size was taken from is noted.

The raw effect size "r" and sample size (n) is given for each of the effect sizes being analyzed.

	13	•	· (*	f_{x}
1	A	В	С	D
1	Study	Class	r	n
2	1	math	0.48	30
3	2a	science	-0.16	18
4	2b	science	-0.13	33
5	3	science	-0.2	19
6	4	math	0.42	25
7	5a	math	0.45	14
8	5b	math	0.33	22
9	5c	math	0.45	18
10	6	science	-0.11	17
11	7	math	0.49	17
12	8	science	-0.1	17

How do you choose between Fixed & Random Effect Models ???

•The assumptions of the Fixed Effect model are less likely to be met than those of the Random Effect model. Even "replications" don't use all the same external validity elements and operationalizations...

•The sampling error estimate of the Random Effect model is likely to be larger, and, so, the resulting statistical tests less powerful than for the Fixed Effect model

•It is possible to test to see if the amount of variability (heterogeneity) among a set of effect sizes is larger than would be expected if all the effect sizes came from the same population. Rejecting the null is seen by some as evidence that a Random Effect model should be used.

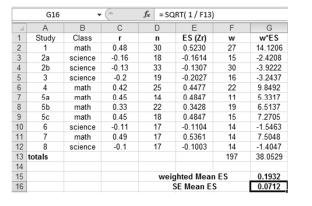
It is very common advice to compute mean effect sizes using both approaches, and to report both sets of results!!!

	E2 \checkmark f_x = FISHER(C2)		F2	•	(=	<i>f</i> _x =D2	-3	
	A B C D E							
	1 Study Class r n ES(Zr)		A	В	С	D	E	F
Stap 0	2 1 math 0.48 30 0.5230	Step 3	Study	Class	r	n	ES (Zr)	w
Step 2	3 2a science -0.16 18 -0.1614 4 2b science -0.13 33 -0.1307		1	math	0.48	30	0.5230	27
Use Fisher's Z transform	5 3 science -0.2 19 -0.2027	Compute inverse	2a 2b	science science	-0.16 -0.13	18 33	-0.1614	15 30
to normalize each "r"	6 4 math 0.42 25 0.4477	variance weight	3	science	-0.2	19	-0.2027	16
	7 5a math 0.45 14 0.4847		4	math	0.42	25	0.4477	22
1. Label the column	8 5b math 0.33 22 0.3428 9 5c math 0.45 18 0.4847	1. Label the column	5a	math	0.45	14	0.4847	11
	10 6 science -0.11 17 -0.1104		5b 5c	math math	0.33 0.45	22 18	0.3428	19 15
2. Highlight a cell	11 7 math 0.49 17 0.5361	2. Highlight a cell	6	science	-0.11	17	-0.1104	14
Type "=" and the	12 8 science -0.1 17 -0.1003	3. Type "=" and the	7	math	0.49	17	0.5361	14
formula (will appear		formula (will appear	8	science	-0.1	17	-0.1003	14
in the <i>fx</i> bar above		in the <i>fx</i> bar above						
the cells)		the cells)						
Copy that cell into		Copy that cell into	-		·		()	
other cells in that	Formula is	other cells in that	F	ormula	is "n″	cellre	t - 3	
column		column						
column	FISHER("r" cellref)	5. Also compute sum	Rer	n: the	inverse	e varia	nce we	light
All further computations			(w)	is com	puted o	differe	ntly for	
will use ES(Zr)		of ES	diffe	erent ty	pes of	ES		
	G2 fs =F2*E2 A B C D E F G 1 Study Class r n ES (Zr) w w*ES 2 1 math 0.48 30 0.5230 27 14.1206 3 2a science -0.16 18 -0.1614 15 -2.4208							
Ston /	4 2b science -0.13 33 -0.1307 30 -3.9222							
Compute weighted	5 3 science -0.2 19 -0.2027 16 -3.2437 6 4 math 0.42 25 0.4477 22 9.8492							
	7 5a math 0.45 14 0.4847 11 5.3317 8 5b math 0.33 22 0.3428 19 6.5137							
	9 5c math 0.45 18 0.4847 15 7.2705							
	10 6 science -0.11 17 -0.1104 14 -1.5463 11 7 math 0.49 17 0.5361 14 7.5048							
1. Label the column	12 8 science -0.1 17 -0.1003 14 -1.4047							
Highlight a cell								
3. Type "=" and the								
formula (will								
•								
appear in the fx								
bar above the								
cells)								
4. Copy that cell into	Formula is							
other cells in that								
column	"ES (Zr)" cellref * "w" cellref							

								G15	. (*	<i>f</i> _x =G1	.3/F13		
 Step 5 Get sums of weights and weighted ES 1. Add the "Totals" label 2. Highlight cells containing "w" values 3. Click the "Σ" 4. Sum of those cells will appear below last cell 5. Repeat to get sum of weighted ES (shown) 	G13 A B 1 Study Cla: 2 1 ma 3 2a scier 4 2b scier 5 3 scier 6 4 ma 7 5a ma 8 5b ma 9 5c ma 10 6 scier 11 7 ma 12 8 scier 13 totals	r 0.48 0.cce -0.16 0.cce -0.13 0.cce -0.2 h 0.42 h 0.45 0.33 h 0.45 0.25 1cce -0.11	D n 30 18 33 19 25 14 22 18 17 17	W(G2:G12) E ES (Zr) 0.5230 -0.1614 -0.1307 -0.2027 0.4447 0.3428 -0.4447 -0.1104 0.5361 -0.1003	F w 27 15 300 16 22 11 19 15 14 14 14 14 797	G w*ES 14,1206 -2,4208 -3,9222 -3,2437 9,8492 5,3317 6,5137 7,2705 -1,5463 7,5048 -1,4047 38,0529	 Step 6 Compute weighted mean ES 1. Add the label 2. Highlight a cell 3. Type "=" and the formula (will appea in the <i>fx</i> bar above the cells) The formula is 	A A 1 Study 2 1 3 2a 4 2b 5 3 6 4 7 5a 8 5b 9 5c 10 6 11 7 12 8 13 totals 14 15	 	eighte	E ES (Zr) 0.5230 -0.1614 -0.1307 -0.2027 0.4477 0.4847 -0.4847 -0.1104 0.5361 -0.1003 ghted Mean	cellre	G w*ES 14.1200 -2.4208 -3.9222 -3.2437 9.8492 5.3317 6.5137 7.2705 -1.5463 7.5048 -1.4047 38.0525 0.1932
Computing weighted nean r Step 7 Transform mean ES → r 1. Add the label 2. Highlight a cell 3. Type "=" and the formula (will appear in the fx	1 Study Cl. 2 1 m 3 2a sciu 4 2b sciu 5 3 sciu 6 4 m 7 5a m 8 5b m 9 5c m 10 6 sciu 11 7 m	C 3 C 385 r ath 0.48 nnce -0.16 nnce -0.13 ath 0.42 ath 0.45 ath 0.45 ath 0.45 nnce -0.11	D n 30 18 33 19 25 14 22 18 17 17 17	E E (Zr) 0.5230 0.1614 0.1307 -0.2027 0.4477 0.4477 0.4447 0.3428 0.4447 -0.1104 0.5361 -0.1003	F w 27 15 30 16 22 11 19 15 14 14 14 14 197	G w*ES 14.1206 -2.4208 -3.9222 -3.2437 9.8492 5.3317 6.5137 7.2705 -1.5463 7.5048 -1.4047 38.0529 0.1932							

The formula is

cells)


FISHERINV("meanES" cellref)

Ta Da !!!!

Z-test of mean ES (also test of r)

Step 1 Compute Standard Error of mean ES

- 1. Add the label
- 2. Highlight a cell
- Type "=" and the formula (will appear in the *fx* bar above the cells)

The formula is

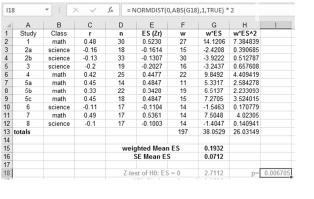
SQRT(1 / "sum of weights" cellref)

Z-test of mean ES (also test of r)

Step 2 Compute Z

- 1. Add the label
- 2. Highlight a cell
- 3. Type "=" and the formula (will appear in the *fx* bar above the cells)

	G18	•	. (*	<i>f</i> _x = G1	5/G16		
	A	В	С	D	E	F	G
1	Study	Class	r	n	ES (Zr)	w	w*ES
2	1	math	0.48	30	0.5230	27	14.1206
3	2a	science	-0.16	18	-0.1614	15	-2.4208
4	2b	science	-0.13	33	-0.1307	30	-3.9222
5	3	science	-0.2	19	-0.2027	16	-3.2437
6	4	math	0.42	25	0.4477	22	9.8492
7	5a	math	0.45	14	0.4847	11	5.3317
8	5b	math	0.33	22	0.3428	19	6.5137
9	5c	math	0.45	18	0.4847	15	7.2705
10	6	science	-0.11	17	-0.1104	14	-1.5463
11	7	math	0.49	17	0.5361	14	7.5048
12	8	science	-0.1	17	-0.1003	14	-1.4047
13	totals					197	38.0529
14							
15				weig	hted Mean	ES	0.1932
16					SE Mean ES		0.0712
17							
18				Z-te	st of H0: ES	= 0	2.7112


The formula is

"weighted Mean ES cellref" / "SE mean ES cellref"

Z-test of mean ES (also test of r)

Step 3 Compute p-value

- 1. Add the label
- 2. Highlight a cell
 3. Type "=" and
- the formula (will appear in the *fx* bar above the cells)

The formula is

"= NORMDIST(0,ABS(G18),1,TRUE) * 2"

Ta Da !!!!

Cls	G19	▼ (C C	<i>f</i> _x = G1	5 - (1.96*G1 E	.6) F	G		Cls		G23	■	() C	$f_{\mathbf{x}} = FI_{\mathbf{x}}$	SHERINV(G	19) F	G
Step 1 Compute CI values for ES 1. Add the labels 2. Highlight a cell	1 Study 2 1 3 2a 4 2b 5 3 6 4 7 5a 8 5b 9 5c 10 6 11 7 12 8	Class math science science math math math science math science	r 0.48 -0.16 -0.13 -0.2 0.42 0.45 0.33 0.45 -0.11 0.49 -0.1	n 30 18 33 19 25 14 22 18 17 17 17	ES (Zr) 0.5230 -0.1614 -0.1307 -0.2027 0.4477 0.4847 0.3428 0.4847 -0.1104 0.5361 -0.1003	w 27 15 30 16 22 11 19 15 14 14 14	w*ES 14.1206 -2.4208 -3.9222 -3.2437 9.8492 5.3317 6.5137 7.2705 -1.5463 7.5048 -1.4047	Cc → 1.	ep 2 onvert ES bour r bounds Add the label Highlight a ce	ell	Study 1 Study 2 1 3 2a 4 2b 5 3 6 4 7 5a 8 5b 9 5c 00 6 11 7 12 8 3 totals	Class math science science math math math science math science	r 0.48 -0.16 -0.13 -0.2 0.42 0.45 0.33 0.45 -0.11 0.49 -0.1	n 30 18 33 19 25 14 22 18 17 17 17	ES (Zr) 0.5230 -0.1614 -0.1307 -0.2027 0.4477 0.4847 -0.4847 -0.1404 -0.5361 -0.1003	w 27 15 30 16 22 11 19 15 14 14 14 14 197	w*ES 14.1206 -2.4208 -3.9222 -3.2437 9.8492 5.3317 6.5137 7.2705 -1.5463 7.5048 -1.4047 38.0529
 Type "=" and the formula (will appear in the fx bar above the cells) 	13 totals 14 15 16 17 18 19 20 21 22 22			Z-te	ghted Mean SE Mean ES st of H0: ES 05% C1 Tow upp eta-analytic	= 0 er bound er bound	38.0529 0.1932 0.0712 2.7112 0.0535 1 0.3328 0.1908	3.	Type "=" and formula (will a in the <i>fx</i> bar a the cells)	the appear above	4 5 6 7 7 8 8 9 9 9 9 9 20 21 22 23 3 4			Z-te	leta-analyti 95% Cl lov	S S = 0 ver bound per bound c r	0.1908
The formulas are								Th	e formula for e	each is							
								FI	SHERINV("CI	boundary	" cellre	ef)		Ta C)a !!!	!	
	S" cellret	+ (1.9	6 * "S	SE Me	ean ES			FI	SHERINV("CI	boundary	" cellre	ef)		Ta D)a !!!	!	
Upper "wtdMean E	S" cellret	+ (1.9	6 * "S we'v	se Me	ean ES	5" cell		FI	SHERINV("CI	boundary	" cellro	ef)	-	Ta D)a !!!	!	
Upper "wtdMean E	S" cellref	+ (1.9	6 * "S we'v <u>ES</u>	se Me	ed $(w \times E)$ $\sum w$	5" cell		FI	SHERINV("CI	boundary	" cellr	ef)		Ta C)a !!!	!	
Upper "wtdMean E Here are Mean ES SE of the Mean I Z-test for the Me	S" cellref	+ (1.9	6 * "S we'v <u>ES</u>	SE Me re use $= \frac{\sum}{se_{ES}} =$	ed $(w \times E) = \sqrt{\frac{1}{\sum w}}$	5" cell		FI	SHERINV("CI	boundary	" cellr	ef)		Ta C)a !!!	!	
Upper "wtdMean E Here are 1 Mean ES SE of the Mean I	S" cellref	+ (1.9	6 * "S we'v ES	SE Me re use $= \frac{\sum}{se_{ES}} = Z$	ean ES ed $(w \times E)$ $\sum w$ $= \sqrt{\frac{1}{\sum v}}$	5" cell	lref)	FI	SHERINV("CI	boundary	" cellr	ef)		Ta C)a !!!	!	

What about computing a Random Effect weighted mean ES??

It is possible to compute a "w" value that takes into account both the random sampling variability among the studies and the systematic sampling variability.

Then you would redo the analyses using this "w" value – and that would be a Random Effect weighted mean ES!

Doing either with a large set of effect sizes, using XLS, is somewhat tedious, and it is easy to make an error that is very hard to find.

Instead, find the demo of how to use the SPSS macros written by David Wilson. When we compute the average effect sizes, with significance tests, Cis, etc. -- we assume there is a single population of studies represented & that all have the same effect size, except for sampling error !!!!!

The alternative hypothesis is that there are systematic differences among effect sizes of the studies – **these differences are related to (caused by) measurement, procedural and statistical analysis differences among the studies!!!**

Measurement

operationalizations of IV manipulations/measures & DV measures, reliability & validity,

Procedural

• sampling, assignment, tasks & stimuli, G/WG designs, exp/nonexp designs, operationalizations of controls

Statistical analysis

• bivariate v multivariate analyses, statistical control

Q

We can test if there are effect size differences associated with any of these differences among studies !!!

Remember that one goal of meta-analyses is to help us decide how to design and conduct future research. So, knowing what measurement, design, and statistical choices influence resulting effect sizes can be very helpful!

This also relates back to **External Validity** – does the selection of population, setting, task/stimulus & societal temporal "matter" or do basic finding generalize across these?

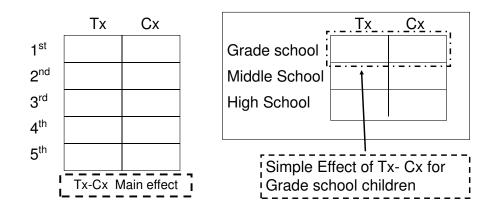
This also related to **Internal Validity** – does the selection of research design, assignment procedures, and control procedures "matter" or do basic finding generalize across these?

We can test for homogeneity vs. heterogeneity among the effect sizes in our meta-analysis.

The "Q test" has a formulas much like a Sum of Squares, and is distributed as a X^2 , so it provides a significance test of the Null Hypothesis that the heterogeneity among the effect sizes is no more than would be expected by chance,

We already have much of this computed, just one more step...

$$Q = \sum (w \times ES^2) - \frac{\left[\sum (w \times ES)\right]^2}{\sum w} =$$


õ

Please note: There is disagreement about the use of this statistical test, especially about whether it is a necessary pre-test before examining design features that may be related to effect sizes.

Be sure you know the opinion of "your kind" !!!

Does it matter which effect size you use – or are they generalizable???

This looks at population differences, but any "2nd variable" from a factorial design or multiple regression/ANCOVA might influence the resulting effect size !!!

Computing Q

Step 1

You'll start with the w & s*ES values you computed as part of the mean effect size calculations.

	G13	•	. (*	<i>f</i> _x =SU	M(G2:G12)		
	A	В	С	D	E	F	G
1	Study	Class	r	n	ES (Zr)	w	w*ES
2	1	math	0.48	30	0.5230	27	14.1206
3	2a	science	-0.16	18	-0.1614	15	-2.4208
4	2b	science	-0.13	33	-0.1307	30	-3.9222
5	3	science	-0.2	19	-0.2027	16	-3.2437
6	4	math	0.42	25	0.4477	22	9.8492
7	5a	math	0.45	14	0.4847	11	5.3317
8	5b	math	0.33	22	0.3428	19	6.5137
9	5c	math	0.45	18	0.4847	15	7.2705
10	6	science	-0.11	17	-0.1104	14	-1.5463
11	7	math	0.49	17	0.5361	14	7.5048
12	8	science	-0.1	17	-0.1003	14	-1.4047
13	totals					197	38.0529

Computing Q

Step 2

Compute weighted ES² for each study

- 1. Label the column
- 2. Highlight a cell
- 3. Type "=" and the formula (will appear in the *fx* bar above the cells)
- 4. Copy that cell into other cells in that column

	H2	•	(<i>f_x</i> = F2	*E2^2			
	A	В	С	D	E	F	G	Н
1	Study	Class	r	n	ES (Zr)	w	w*ES	w*ES^2
2	1	math	0.48	30	0.5230	27	14.1206	7.384839
3	2a	science	-0.16	18	-0.1614	15	-2.4208	0.390685
4	2b	science	-0.13	33	-0.1307	30	-3.9222	0.512787
5	3	science	-0.2	19	-0.2027	16	-3.2437	0.657608
6	4	math	0.42	25	0.4477	22	9.8492	4.409419
7	5a	math	0.45	14	0.4847	11	5.3317	2.584278
8	5b	math	0.33	22	0.3428	19	6.5137	2.233093
9	5c	math	0.45	18	0.4847	15	7.2705	3.524015
10	6	science	-0.11	17	-0.1104	14	-1.5463	0.170779
11	7	math	0.49	17	0.5361	14	7.5048	4.02305
12	8	science	-0.1	17	-0.1003	14	-1.4047	0.140941
13	totals					197	38.0529	
	1							

Formula is

"w" cellref * "ES (Zr)" cellref 2

Computing Q

Step 3

Compute sum of weighted ES²

- Highlight cells containing "w*ES²" values
- 2. Click the " Σ "
- Sum of those cells will appear below last cell

	H13	•	0	<i>f</i> _∗ =SU	M(H2:H12)			
	A	В	С	D	E	F	G	Н
1	Study	Class	r	n	ES (Zr)	w	w*ES	w*ES^2
2	1	math	0.48	30	0.5230	27	14.1206	7.384839
3	2a	science	-0.16	18	-0.1614	15	-2.4208	0.390685
4	2b	science	-0.13	33	-0.1307	30	-3.9222	0.512787
5	3	science	-0.2	19	-0.2027	16	-3.2437	0.657608
6	4	math	0.42	25	0.4477	22	9.8492	4.409419
7	5a	math	0.45	14	0.4847	11	5.3317	2.584278
8	5b	math	0.33	22	0.3428	19	6.5137	2.233093
9	5c	math	0.45	18	0.4847	15	7.2705	3.524015
10	6	science	-0.11	17	-0.1104	14	-1.5463	0.170779
11	7	math	0.49	17	0.5361	14	7.5048	4.02305
12	8	science	-0.1	17	-0.1003	14	-1.4047	0.140941
13	totals					197	38.0529	26.03149

Computing Q Step 4	F27 C A B C 1 Study Class r 2 1 math 0.4! 3 2a science -0.1 4 2b science -0.1 5 3 science -0.1	8 30 0.5230 27 6 18 -0.1614 15 3 33 -0.1307 30	G H w*ES w*ES*2 14.1206 7.384839 -2.4208 0.390685 -3.9222 0.512787 -3.2437 0.657608	Computing Q Step 5	F29 A 1 Study 2 1 3 2a 4 2b	B Class math science science	C r 0.48 -0.16 -0.13	33 -0.1307 3	7 14.1206 7.38 5 -2.4208 0.39 0 -3.9222 0.51
Compute Q	5 3 science -0.7 6 4 math 0.41 7 5a math 0.42 8 5b math 0.41 9 5c math 0.41 10 6 science -0.1 11 7 math 0.44 12 8 science -0.1	2 25 0.4477 22 5 14 0.4847 11 3 22 0.3428 19 5 18 0.4847 15 1 17 -0.1104 14 9 17 0.5361 14	-3.2437 0.657608 9.8492 4.409419 5.3317 2.584278 6.5137 2.233093 7.2705 3.524015 -1.5463 0.170779 7.5048 4.02305 -1.4047 0.140941	Add df & p	5 3 6 4 7 5a 8 5b 9 5c 10 6 11 7 12 8	science math math math science math science	0.42 0.45 0.33 0.45 -0.11 0.49		2 9.8492 4.40 1 5.3317 2.58 9 6.5137 2.23 5 7.2705 3.52 4 -1.5463 0.17 4 7.5048 4.0
 Add the label Highlight a cell Type "=" and the 	13 totals 14 15 16 17 18 19	197 weighted Mean ES SE Mean ES Z-test of H0: ES = 0	38.0529 26.03149 0.1932 0.0712 2.7112	 Add the labels Add in df = #cases - 1 Calculate p-value 	13 totals 14 15 16 17 18			veighted Mean ES SE Mean ES Z-test of H0: ES = 0	0.1932 0.0712 0.7112
formula (will appear in the <i>fx</i> bar above the	16 17 18 19 20 21 22 23 23 24 25 26 27	95% CI lower bound upper bound Meta-analytic r 95% CI lower bound upper bound	0.3328 0.1908 0.0535	using Chi-square p- value function	19 20 21 22 23 24 25			95% CI lower b upper bound Meta-analytic r 95% CI lower b upper b	0.3328 0.1908 ound 0.0535
cells)	26 27	Q = 18.68111			25 26 27 28 29			Q = 18.6 $df = $ $p = 0.04$	10
 p > .05 effect size heteroger by chance Study attributes can 	not be systemat	than would be e ically related to	effect						
 p > .05 effect size heteroger by chance 	neity is no more not be systemat no systematic va eneity is more tha	than would be e tically related to riation among e in would be exp	effect effect sizes bected by						

Modeling Attributes Related to Effect Sizes

There are different approaches to testing for relationships between study attributes and effect sizes:

Fixed & Random Effects Q-test These are designed to test whether groups of studies that are qualitatively different on some study attribute have different effect sizes

Fixed & Random Effects Meta Regression These are designed to examine possible multivariate differences among the set of studies in the meta-analysis, using quantitative, binary, or coded study attribute variables.

Fixed Effects Q-test --Comparing Subsets of Studies

Step 1

Sort the studies/cases into the subgroups

Different studies in this meta-analysis were conducted by teachers of different subjects – Math & Science. Were there different effect sizes from these two classes ??

	N18	•	0	f_{x}			
1	A	В	С	D	E	F	G
1	Study	Topic	r	n	ES (Zr)	w	w*ES
2	1	math	0.48	30	0.5230	27	14.1206
3	4	math	0.42	25	0.4477	22	9.8492
4	5a	math	0.45	14	0.4847	11	5.3317
5	5b	math	0.33	22	0.3428	19	6.5137
6	5c	math	0.45	18	0.4847	15	7.2705
7	7	math	0.49	17	0.5361	14	7.5048
8							
9							
10							
11							
12							
13							
14							
15							
16	2a	science	-0.16	18	-0.1614	15	-2.4208
17	2b	science	-0.13	33	-0.1307	30	-3.9222
18	3	science	-0.2	19	-0.2027	16	-3.2437
19	6	science	-0.11	17	-0.1104	14	-1.5463
20	8	science	-0.1	17	-0.1003	14	-1.4047
21							

All the values you computed earlier for each study are still good !

Computing Fixed Effects Q-test

Step 2

Compute weighted ES² for each study

- 1. Label the column
- 2. Highlight a cell
- 3. Type "=" and the formula (will appear in the *fx* bar above the cells)
- 4. Copy that cell into other cells in that column

H2 - ($f_{x} = F2^{*}E2^{2}$						
	A	В	С	D	E	F	G	H	
1	Study	Topic	r	n	ES (Zr)	w	w*ES	w*ES^2	
2	1	math	0.48	30	0.5230	27	14.1206	7.384839	
3	4	math	0.42	25	0.4477	22	9.8492	4.409419	
4	5a	math	0.45	14	0.4847	11	5.3317	2.584278	
5	5b	math	0.33	22	0.3428	19	6.5137	2.233093	
6	5c	math	0.45	18	0.4847	15	7.2705	3.524015	
7	7	math	0.49	17	0.5361	14	7.5048	4.02305	
8									
9									
10									
11									
12									
13									
14									
15									
16	2a	science	-0.16	18	-0.1614	15	-2.4208	0.390685	
17	2b	science	-0.13	33	-0.1307	30	-3.9222	0.512787	
18	3	science	-0.2	19	-0.2027	16	-3.2437	0.657608	
19	6	science	-0.11	17	-0.1104	14	-1.5463	0.170779	
20	8	science	-0.1	17	-0.1003	14	-1.4047	0.140941	
04									

Formula is

"w" cellref * "ES (Zr)" cellref 2

fx = H8 - (G8^2)/F8 H12 + 6 **Computing Fixed Computing Q** fx =SUM(H2:H7) H8 - (m Α F В С G Α В С 1 2 3 4 5 6 7 Study Topic ES (Zr) w*ES w*ES^2 n **w** 27 Effects Q-test Study Topic ES (Zr) w*ES w*ES^2 0.48 0.42 0.45 0.33 n 30 25 **w** 27 30 25 14 22 7.384839 1 4 5a 5b 5c math 0.5230 14,1206 1 4 math 0.48 0.5230 14.1206 7.384839 math 22 9.8492 4.409419 math 0.42 0.4477 22 9.8492 4.409419 Step 4 0 4847 11 2 584278 math 5.3317 5a 5b 5c 7 0.45 14 0.4847 11 5.3317 2.584278 math 0.3428 math 19 6.5137 2 233093 math 0.33 22 18 0.3428 19 6.5137 2.233093 0.45 18 17 math 0.4847 15 7.2705 3.524015 Step 3 math 0.45 0.4847 15 7.2705 3.524015 math 0.49 0.5361 14 7.5048 4.02305 math 0.49 17 0.5361 14 7.5048 4.02305 108 50.5906 24.15869 Compute $\mathsf{Q}_{\text{within}}$ for totals totals 108 50.5906 24.15869 9 10 Get sums of weights, each group $\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ \end{array}$ weighted ES & weighted Q (math) = 0.460475 ESŽ 13 14 1. Add the label 15 16 17 18 2a science -0.16 18 -0.1614 15 -2.4208 0.390685 2a 2b 3 science -0.16 18 -0.1614 15 -2.4208 0.390685 2b -0.13 33 -0.1307 30 -3.9222 0.512787 science 2. Highlight a cell 33 19 -0.1307 30 16 -3.9222 0.512787 science -0.13 -0.2 19 -0.2027 16 -3.2437 0.657608 science 1. Add the "Totals" label -3.2437 -0.2 -0.2027 0.657608 science 17 -0.1104 14 -1.5463 0.170779 science -0.11 3. Type "=" and the 19 20 science -0.11 17 -0.1104 14 14 -1.5463 0.170779 17 -0.1003 14 -1.4047 0.140941 science -0.1 2. Highlight cells 17 -0.1003 -1.4047 0.140941 -0.1 science totals 89 -12.5377 1.8728 89 -12.5377 1.8728 totals formula (will containing "w" values 3. Click the "Σ" appear in the fx 0.106585 Q (science) = 4. Sum of those cells bar above the will appear below last cells) cell 5. Repeat to get sum of "sum weightedES" cellref each value for each "sum w*ES^2" cellref ------The formula is group "sum weights" cellref fx =18.6811 - (H12+H25) **Computing Q** H27 Step 5 Compute Qbetween

- 1. Add the label
- 2. Highlight a cell
- 3. Type "=" and the formula (will appear in the *fx* bar above the cells)

- 21	A	D	C	U		- F	G	
1	Study	Topic	r	n	ES (Zr)	w	w*ES	w*ES^2
2	1	math	0.48	30	0.5230	27	14.1206	7.384839
3	4	math	0.42	25	0.4477	22	9.8492	4.409419
4	5a	math	0.45	14	0.4847	11	5.3317	2.584278
5	5b	math	0.33	22	0.3428	19	6.5137	2.233093
6	5c	math	0.45	18	0.4847	15	7.2705	3.524015
7	7	math	0.49	17	0.5361	14	7.5048	4.02305
8		totals				108	50.5906	24.15869
9								
10								
11								
12						Q (m	ath) =	0.460475
13								
14								
15								
16	2a	science	-0.16	18	-0.1614	15	-2.4208	0.390685
17	2b	science	-0.13	33	-0.1307	30	-3.9222	0.512787
18	3	science	-0.2	19	-0.2027	16	-3.2437	0.657608
19	6	science	-0.11	17	-0.1104	14	-1.5463	0.170779
20	8	science	-0.1	17	-0.1003	14	-1.4047	0.140941
21		totals				89	-12.5377	1.8728
22								
23								
24								
25						Q (scie	ence) =	0.10658
26								
27						Q (Cla	ass) =	18.11404

The formula is

H29 $f_x = CHIDIST(H27,H28)$ + (**Computing Q** A В D G w*ES Study ES (Zr) w*ES^2 Topic **w** 27 22 n 30 25 math 0.48 0.5230 14.1206 7.384839 1 4 math 0.42 0.4477 9.8492 4.409419 Step 6 5a 0.45 14 0.4847 11 5.3317 2.584278 math 5b math 0.33 22 18 0.3428 19 6.5137 2.233093 0.45 15 5c math 0.4847 7.2705 3.524015 17 14 math 0.49 0.5361 7.5048 4.02305 108 Add df & p totals 50.5906 24.15869 12 13 14 Q (math) = 0.460475 1. Add the labels 2. Add in df = #cases - 2 15 16 2a 2b science -0.16 18 -0.1614 15 -2.4208 0.390685 17 18 science -0.13 33 -0.1307 30 -3.9222 0.512787 3. Calculate p-value 19 16 -0.2027 -3.2437 0 657608 3 science -0.2 19 20 21 22 23 24 25 26 27 28 29 science -0.11 17 17 -0.1104 14 -1.5463 0.170779 using Chi-square 14 -1.4047 science -0.1 -0.1003 0.140941 89 -12.5377 1.8728 totals p-value function 0.106585 Q (science) = Q (Class) = 18.11404 df 0.033873

Formula is CHIDIST("Q" cellref , "df" cellref)

Interpreting the Fixed Effects Q-test

p > .05

This study attribute is not systematically related to effect sizes

p < .05

• This study attribute is not systematically related to effect sizes

If you have group differences, you'll want to compute separate effect size aggregates and significance tests for each group.

Computing weighted mean ES for @ group

Step 1

Compute weighted mean ES

- 1. Add the label
- 2. Highlight a cell
- Type "=" and the formula (will appear in the *fx* bar above the cells)

	D10		• (*	<i>f_x</i> =G8,	/F8		
	A	В	С	D	E	F	G
1	Study	Topic	r	n	ES (Zr)	w	w*ES
2	1	math	0.48	30	0.5230	27	14.1206
3	4	math	0.42	25	0.4477	22	9.8492
4	5a	math	0.45	14	0.4847	11	5.3317
5	5b	math	0.33	22	0.3428	19	6.5137
6	5c	math	0.45	18	0.4847	15	7.2705
7	7	math	0.49	17	0.5361	14	7.5048
8		totals				108	50.5906
9							
10	weig	ghted Mea	n ES	0.468431	1		
11		-					
12							
13							
14							
15							
16	2a	science	-0.16	18	-0.1614	15	-2.4208
17	2b	science	-0.13	33	-0.1307	30	-3.9222
18	3	science	-0.2	19	-0.2027	16	-3.2437
19	6	science	-0.11	17	-0.1104	14	-1.5463
20	8	science	-0.1	17	-0.1003	14	-1.4047
21		totals				89	-12.5377
22							
23	weighted Mean ES			-0.14087			
24		•					

"sum weightedES" cellref

The formula is

"sum weights" cellref

Computing weighted mean r for @ group

Step 2

Transform mean ES \rightarrow r

- 1. Add the label
- 2. Highlight a cell
- Type "=" and the formula (will appear in the *fx* bar above the cells)

The formula is

FISHERINV("meanES" cellref)

Α В С D E G ES (Zr) w*ES Study 1 2 3 4 5 Topic r n w 27 14.1206 0.48 30 0.5230 1 math 4 math 0.42 25 0.4477 22 9.8492 5a math 0.45 14 0.4847 11 5.3317 5b 22 6.5137 math 0.33 0.3428 19 6 5c math 0.45 18 0.4847 15 7.2705 7 17 0.5361 7.5048 math 0.49 14 108 50.5906 8 totals 9 weighted Mean ES 0.468431 Meta-analytic r 0.436931 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 -0.1614 -2.4208 2a science -0.16 18 15 33 -0.1307 -3.9222 2b science -0.13 30 19 -3.2437 16 3 science -0.2 -0.2027 -0.11 17 -0.1104 14 -1.5463 science -1.4047 8 science -0.1 17 -0.1003 14 -12.5377 totals 89 -0.13995 weighted Mean ES -0.14087 Meta-analytic r

Ta Da !!!!

 f_{x} = FISHERINV(D10)

G10

- (m

Z-tests of mean ES (also test of r)

Step 1

Compute Standard Error of mean ES

- 1. Add the label
- 2. Highlight a cell
- Type "=" and the formula (will appear in the *fx* bar above the cells)

	D11	•	· (*	<i>f</i> _≭ =SQF	RT(1/F8)		
1	A	В	С	D	E	F	G
1	Study	Topic	r	n	ES (Zr)	w	w*ES
2	1	math	0.48	30	0.5230	27	14.1206
3	4	math	0.42	25	0.4477	22	9.8492
4	5a	math	0.45	14	0.4847	11	5.3317
5	5b	math	0.33	22	0.3428	19	6.5137
6	5c	math	0.45	18	0.4847	15	7.2705
7	7	math	0.49	17	0.5361	14	7.5048
8		totals				108	50.5906
9							
10	wei	ghted Mea	n ES	0.468431	Meta-analytic r		0.436931
11		SE Mean E	S	0.096225			
12							
13							
14							
15							
16	2a	science	-0.16	18	-0.1614	15	-2.4208
17	2b	science	-0.13	33	-0.1307	30	-3.9222
18	3	science	-0.2	19	-0.2027	16	-3.2437
19	6	science	-0.11	17	-0.1104	14	-1.5463
20	8	science	-0.1	17	-0.1003	14	-1.4047
21		totals				89	-12.5377
22							
23	weighted Mean ES			-0.14087	Meta-an	alytic r	-0.13995
24	SE Mean ES			0.106		,	
25							

The formula is

SQRT(1 / "sum of weights" cellref)

Z-test of mean ES (also test of r)

Step 2

Compute Z

- 1. Add the label
- 2. Highlight a cell
- 3. Type "=" and the formula (will appear in the *fx* bar above the cells)

	D13	•	· (=	<i>f</i> _x =D10	/D11		
	A	В	С	D	E	F	G
1	Study	Topic	r	n	ES (Zr)	w	w*ES
2	1	math	0.48	30	0.5230	27	14.1206
3	4	math	0.42	25	0.4477	22	9.8492
4	5a	math	0.45	14	0.4847	11	5.3317
5	5b	math	0.33	22	0.3428	19	6.5137
6	5c	math	0.45	18	0.4847	15	7.2705
7	7	math	0.49	17	0.5361	14	7.5048
8		totals				108	50.5906
9							
10	weighted Mean ES			0.468431	Meta-analytic r		0.436931
11		SE Mean E	S	0.096225			
12							
13	Z-te	st of H0: ES	S = 0	4.868082			
14							
15							
16	2a	science	-0.16	18	-0.1614	15	-2.4208
17	2b	science	-0.13	33	-0.1307	30	-3.9222
18	3	science	-0.2	19	-0.2027	16	-3.2437
19	6	science	-0.11	17	-0.1104	14	-1.5463
20	8	science	-0.1	17	-0.1003	14	-1.4047
21		totals				89	-12.5377
22							
23	wei	ghted Mea	n ES	-0.14087	Meta-an	alytic r	-0.13995
24		SE Mean E	S	0.106			
25							
26		st of H0: ES	0 0	-1.32899			

Ta Da !!!!

The formula is

"weighted Mean ES cellref" / "SE mean ES cellref"

ō

Random Effect Q-test -- Comparing Subsets of Studies

Just as there is the random effects version of the mean ES, there is ransom effects version of the Q-test,

Like with the mean ES computation, the difference is the way the error term is calculated – based on the assumption that the variability across studies included in the meta-analysis comes from 2 sources;

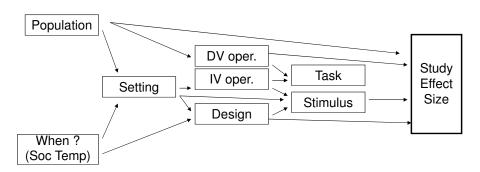
- · Sampling variability
- "Real" effect size differences between studies caused by the differences in operationalizations and external validity elements

Take a look at the demo of how to do this analysis using the SPSS macros written by David Wilson.

Meta Regression

Far more interesting than the Q-test for comparing subgroups of studies is meta regression.

These analyses allow us to look at how multiple study attributes are related to effect size, and tell us the unique contribution of the different attributes to how those effects sizes vary.


There are both "fixed effect" and "random effects" models.

Random effects meta regression models are more complicated, but have become increasingly popular because the assumptions of the model include the idea that differences in the effect sizes across studies are based on a combination of sampling variation and differences in how the studies are conducted (measurement, procedural & statistical analysis differences).

An example of random effects meta regression using Wilson's SPSS macros is shown in the accompanying handout.

Meta Path Analyses

Meta analytic studies of what leads different studies to find different effect sizes can involve hundreds of studies, several study-difference variables, and sophisticated multivariate models!

The results of these studies help researchers:

- understand the rich research literature of an area of study
- decide the best ways to conduct future research studies!!!

Ö,