Parametric \& Nonparametric
 Univariate Statistics, Univariate Significance Tests \& Tests of Association

- Statistics \& models we will consider
- Univariate stats
- Univariate statistical tests
- X^{2} Tests for qualitative variables
- Parametric tests of Association
- Pearson's correlation
- Nonparametric tests of Association
- Spearman's rank order correlation (Rho)
- Kendal's Tau

Statistics We Will Consider

Statistics We Will Consider			
DV	Categorical	Parametric Interval/ND	Nonparametric Ordinal/~ND
univariate stats	mode, \#cats	mean, std	median, IQR
univariate tests	gof X^{2}	1-grp t-test	1-grp Mdn test
association	χ^{2}	Pearson's r	Spearman's r
2 bg	X^{2}	t- / F-test	M-W K-W Mdn
kbg	X^{2}	F-test	K-W Mdn
2wg	McNem Crn's	t- / F-test	Wil's Fried's
kwg	Crn's	F-test	Fried's
M-W -- Mann-Whitney U-Test K-W -- Kruskal-Wallis Test Mdn -- Median Test		Wil's -- Wilcoxin's Test Fried's -- Friedman's F-te	
		-- McNemar's X^{2}	Crn's - Cochran's

Univariate Statistics for qualitative variables
Central Tendency - "best guess of next case's value"

- Mode -- the most common score(s)
- uni-, bi, multi-modal distributions are all possible

Variability - "index of accuracy of next guess"

- \# categories
- guessing whether or not the next person has a pet is more likely to be correct than guessing what kind of pet they have (including none)

Shape - symmetry \& proportional distribution

- doesn't make sense for qualitative variables
- no prescribed value order

Central Tendency - "best guess of next case's value"

- mean or arithmetic average $\rightarrow M=\Sigma X / N$
- $1^{\text {st }}$ moment of the normal distribution formula
- since ND unimodal \& symetrical \rightarrow mode $=$ mean $=$ mdn

Variability - "index of accuracy of next guess"

- sum of squares $\rightarrow S S=\Sigma(X-M)^{2}$
- variance $\rightarrow \quad \mathrm{s}^{2}=\mathrm{SS} /(\mathrm{N}-1)$
- standard deviation $\rightarrow \mathrm{s}=\sqrt{ } \mathrm{s}^{2}$
- std preferred because is on same scale as the mean
- $2^{\text {nd }}$ moment of the normal distribution formula
- average extent of deviation of each score from the mean

Nonparametric Univariate Statistics for ~ND/~Int variables

Central Tendency - "best guess of next case's value"

- median \rightarrow middle-most value, $50^{\text {th }}$ percentile, $2^{\text {nd }}$ quartile

How to calculate the Mdn

1. Order data values
2. Assign depth to each value, $\begin{array}{llllllll}11 & 13 & 16 & 18 & 18 & 21 & 22\end{array}$ starting at each end

3. Calculate median depth

$$
D_{\text {man }}=(N+1) / 2
$$

$$
(7+1) / 2=4
$$

4. Median = value at $D_{\text {man }}$
(or average of 2 values @ $D_{\text {mdn }}$, if odd number of values)

Parametric Univariate Statistics for ND/Int variables, cont.

Shape - "index of symmetry"

- skewness \rightarrow

$$
\frac{\Sigma(X-M)^{3}}{(N-1)^{*} s^{3}}
$$

- $3^{\text {rd }}$ moment of the normal distribution formula
- 0 = symmetrical, + = right-tailed, - = left-tailed
- can't be skewed \& ND

Shape -"index of proportional distribution"

- kurtosis $\rightarrow \mathrm{M}=\Sigma \mathrm{X} / \mathrm{N}$

$$
\frac{\Sigma(X-M)^{4}}{(N-1)^{*} s^{4}}-3
$$

- 4th moment of the normal distribution formula
- 0 = prop dist as ND, + = leptokurtic, $-=$ platakurtic

The four "moments" are all independent - all combos possible

- mean \& std "are correct" as indices of central tendency \& spread if skewness $=0$ and kurtosic $=0$

Nonparametric Univariate Statistics for ~ND/~Int variables
Variability - "index of accuracy of next guess"

- Inter-quartile range (IQR) \rightarrow range of middle 50%, $3^{\text {rd }}-1^{\text {st }}$ quartile

How to calculate the IQR

1. Order \& assign depth to each value
$\begin{array}{lllllll}11 & 13 & 16 & 18 & 18 & 21 & 22\end{array}$

Calculate median depth

$$
D_{M d n}=(N+1) / 2
$$

3. Calculate quartile depth

$$
D_{Q}=\left(D_{M d n}+1\right) / 2
$$

4. $1^{\text {st }}$ Quartile value
5. $3^{\text {rd }}$ Quartile value
6. $I Q R-3^{\text {rd }}-1^{\text {st }} Q$ values

$$
19.5-14.5=5
$$

Univariate Parametric Statistical Tests for qualitative variables

Goodness-of-fit X^{2} test

- Tests hypothesis about the distribution of category values of the population represented by the sample
- H0: is the hypothesized pop. distribution, based on either ...
- theoretically hypothesized distribution
- population distribution the sample is intended to represent
- E.g., 65% ugrads \& 35% grads or 30% Frosh, 45% Soph \& 25% Juniors
- RH: \& H0: often the same!
- binary and ordered category variables usually tested this way
- gof X^{2} compares hypothesized distribution \& sample dist.
- Retaining H0: -- sample dist. "equivalent to" population dist.
- Rejecting H0: -- sample dist. "is different from" population dist.

Data \& formula for the gof X^{2}

Frequency of different class ranks in sample

Frosh	Soph	Junior
25	55	42

$$
X^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Observed frequency - actual sample values (25,55 \& 42)
Expected frequency - based on a priori hypothesis

- however expressed (absolute or relative proportions, \%s, etc)
- must be converted to expected frequencies

Example of a gof X^{2}
RH: "about $1 / 2$ are sophomores and the rest are divided between frosh \& juniors

1. Obtain expected frequencies

- determine category proportions frosh .25 soph .5 junior . 25
- determine category freq as proportion of total ($\mathrm{N}=134$)
- Frosh $.25^{\star} 122=33.5$ Soph 67 Junior 33.5

2. Compute X^{2}

- $(25-33.5)^{2} / 33.5+(55-67)^{2} / 67+(54-33.5)^{2} / 33.5=16.85$

3. Determine df \& critical X^{2}

- df $=\mathrm{k}-1=3-1=2$
- $\mathrm{X}^{2}{ }_{2,05}=5.99 \quad \mathrm{x}^{2}{ }_{2,01}=9.21$

4. NHST \& such

- $\mathrm{X}^{2}>\mathrm{X}^{2}{ }_{2.01}$, so reject H 0 : at $\mathrm{p}=.01$
- Looks like fewer Frosh - Soph \& more Juniors than expected

Doing gof X^{2} "by hand" - Computators \& p -value calculators

The top 2 rows of the X^{2} Computator will compute a gof X^{2}

If you want to know the p-value with greater precision, use one of the online p-value calculators

Univariate Parametric Statistical Tests for ND/Int

1-sample t-test

Tests hypothesis about the mean of the population represented
by the sample (μ-- "mu")

- H0: value is the hypothesized pop. mean, based on either ...
- theoretically hypothesized mean
- population mean the sample is intended to represent
- e.g., pop mean age = 19
- RH: \& H0: often the same!
-1-sample t-test compares hypothesized $\mu \& x$
- Retaining H0: -- sample mean "is equivalent to" population μ
- Rejecting H0: -- sample mean "is different from" population μ

Example of a 1 -sample t-test $t=\frac{\bar{X}-\mu}{\operatorname{SEM}} \quad$ SEM $=\left(s^{2} / n\right)$
The sample of 22 has a mean of 21.3 and std of 4.3

1. Determine the $\mathrm{HO}: \mu$ value

- We expect that the sample comes from a population with an average age of $19 \quad \mu=19$

2. Compute SEM \& t

- $\mathrm{SEM}=4.3^{2} / 22=.84$
- $\mathrm{t}=(21.3-19) / .84=2.74$

3. Determine df \& t-critical or p -value

- $\mathrm{df}=\mathrm{N}-1=22-1=21$
- Using t-table $t_{21, .05}=2.08 \quad t_{21, .01}=2.83$
- Using p-value calculator $p=.0123$

4. NHST \& such

- $t>t_{2, .05}$ but not $\mathrm{t} 2, .05$ so reject HO : at $\mathrm{p}=.05$ or $\mathrm{p}=.0123$
- Looks like sample comes from population older than 19

Univariate Nonparametric Statistical Tests for ~ND/~In

1-sample median test

Tests hypothesis about the median of the population represented by the sample H 0 : value is the hypothesized pop. median, based on either ...

- theoretically hypothesized mean
- population mean the sample is intended to represent
-e.g., pop median age $=19$
- RH: \& H0: often the same!
- 1-sample median test compares hypothesized \& sample mdns
- Retaining H0: -- sample mdn "is equivalent to" population mdn
- Rejecting H0: -- sample mdn "is different from" population mdn

Example of a 1 -sample median test
age data $\rightarrow \quad 11121313141617171818182020212222$

1. Obtain obtained \& expected frequencies

- determine hypothesized median value $\rightarrow 19$
- sort cases in to above vs. below H0: median value
- Expected freq for each cell $=1 / 2$ of sample $\rightarrow 8$

2. Compute X^{2}

- $(11-8)^{2} / 8+(5-8)^{2} / 8=2.25$

3. Determine df \& X^{2}-critical or p -value

<19	>19
11	5

- $\mathrm{df}=\mathrm{k}-1=2-1=1$
- Using X^{2}-table $\mathrm{X}^{2}{ }_{1,05}=3.84 \mathrm{X}^{2}{ }_{1,05}=6.63$
- Using p-value calculator $p=.1336$

4. NHST \& such

- X2 < X2 1, . 05 \& p > . 05 so retain H0:
- Looks like sample comes from population with median not different from 19

Tests of Univariate ND

One use of gof X^{2} and related univariate tests is to determine if data are distributed as a specific distribution, most often ND.

No matter what mean and std, a ND is defined by symmetry \& proportional distribution

Using this latter idea, we can use a gof X^{2} to test if the frequencies in segments of the distribution have the right proportions

- here we might use a $\mathrm{k}=6$ gof X 2 with expected frequencies based on $\%$ of $2.14,13.59,34.13,34.13,13.59 \& 2.14$

Tests of Univariate ND

One use of t -tests is to determine if data are distributed as a specific distribution, most often ND.
ND have skewness $=0$ and kurtosis $=0$

Testing Skewness
t = skewness / SES

Testing Kurtosis
t = kurtosis / SEK

Standard Error of Skewness
SES $\approx \sqrt{ }(6 / N)$

Standard Error of Kurtosis
SEK $\approx \sqrt{ }(24 / N)$

Both of these are "more likely to find a significant divergence from ND, than that divergence is likely to distort the use of parametric statistics - especially with large N."

The expected frequency for each cell is computed assuming that the H0: is true - that there is no relationship between the row and column variables.

If so, the frequency of each cell can be computed from the frequency of the associated rows \& columns.

Col 1
Col 2

$$
\begin{aligned}
X^{2} & =\sum \frac{(\mathrm{of}-\mathrm{e} f)^{2}}{\mathrm{ef}} \\
\mathrm{df} & =(2-1)^{*}(2-1)=1
\end{aligned}
$$

$\mathrm{X}^{2}{ }_{1, .05}=3.84$
$X^{2}{ }_{1, .01}=6.63$
$p=.0002$ using online p-value calculator

So, we would reject HO : and conclude that there is a pattern of relationship between the variables.

Parametric tests of Association using ND/Int variables

Pearson's correlation

- H0: No linear relationship between the variables, in the population represented by the sample.
- degrees of freedom $d f=N-2$
- range of values -1.00 to 1.00
- reject Ho: If $\left|r_{\text {obtained }}\right|>r_{\text {critical }}$

Pearson's correlation is an index of the direction and extent of the linear relationship between the variables.

It is important to separate the statements...

- there is no linear relationship between the variables
- there is no relationship between the variables
- correlation only addresses the former!

Correlation can not differentiate between the two bivariate distributions shown below - both have no linear relationship

One of many formulas for r is shown on the right.

- each person's " X " \& " Y " scores are converted to

$$
r=\frac{\sum Z_{X}{ }^{*} Z_{Y}}{N}
$$

Z-scores ($M=0 \& S t d=1$).
$\cdot r$ is calculated as the average Z-score cross product.
$+r$ results when most of the cross products are positive (both $\mathrm{Zs}+$ or both $\mathrm{Zs}-$)
$-r$ results when most of the cross products are negative (one $Z+\&$ other Z-)

Nonparametric tests of Association using ~ND/~Int variables

Spearman's Correlation

- H0: No rank order relationship between the variables, in the population represented by the sample.
- degrees of freedom $\mathrm{df}=\mathrm{N}$ - 2
- range of values - 1.00 to 1.00
- reject Ho: If $\left|r_{\text {obtained }}\right|>r_{\text {critical }}$

Computing Spearman's r

One way to compute Spearman's correlation is to convert X \& Z values to ranks, and then correlate the ranks using Pearson's correlation formula, applying it to the ranked data. This demonstrates...

- rank data are "better behaved" (i.e., more interval \& more ND) than value data
- Spearman's looks at whether or not there is a linear relationship between the ranks of the two variables

The most common formula for Spearman's Rho is shown on the right.
To apply the formula, first convert values to ranks.

	\# practices	\# correct	rank \# practices	rank \# correct	d	d^{2}
S1	6	21	4	5	-1	1
S2	2	18	1	4	-3	9
S3	4	7	2	1	1	1
S4	9	15	5	3	2	4
S5	5	10	3	2	1	1
	$6{ }^{*} 16$				$\Sigma d^{2}=16$	

$$
r=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}
$$

$r=1-\frac{6 * 16}{5 * 24}=1-.80=.20$
For small samples $(n<20) r$ is compared to r-critical from tables. For larger samples, r is transformed into t for NHSTesting.

Remember to express results in terms of the direction and extent of rank order relationship !

So, how does this strange-looking
formula work? Especially the " 6 " ???
Remember that we're working with "rank order
agreement" across variable - a much simpler

$$
r=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}
$$

thing than "linear relationship" because there are
a finite number of rank order pairings possible!
If there is complete rank order agreement between the variables ...
\rightarrow then, $\mathrm{d}=0$ for each case $\& \Sigma \mathrm{~d}^{2}=0$
\rightarrow so, $r=1-0$
$\rightarrow r=1 \rightarrow$ indicating a perfect rank-order correlation
If the rank order of the two variables is exactly reversed...
$\rightarrow \Sigma \mathrm{d}^{2}$ can be shown to be $\mathrm{n}\left(\mathrm{n}^{2}-1\right) / 3$
\rightarrow the equation numerator becomes $6{ }^{*} n\left(n^{2}-1\right) / 3=2 * n\left(n^{2}-1\right)$
\rightarrow so, $\mathrm{r}=1-2$
$\rightarrow \mathrm{r}=-1 \rightarrow$ indicating a perfect reverse rank order correlation
If there is no rank order agreement of the two variables ...
$\rightarrow \Sigma \mathrm{d}^{2}$ can be shown to be $\mathrm{n}\left(\mathrm{n}^{2}-1\right) / 6$
\rightarrow the equation numerator becomes 6 * $n\left(n^{2}-1\right) / 6=n\left(n^{2}-1\right)$
\rightarrow so, $r=1-1$
$\rightarrow \mathrm{r}=0 \rightarrow$ indicating no rank order correlation

Nonparametric tests of Association using ~ND/~Int variables

Kendall's Tau

-HO: No rank order concordance between the variables, in the population represented by the sample.

- degrees of freedom df = N - 2
- range of values -1.00 to 1.00
- reject Ho: If | robtained | > rcritical

All three correlations have the same mathematical range (-1, 1).
But each has an importantly different interpretation.

Pearson's correlation

- direction and extent of the linear relationship between the variables

Spearman's correlation

- direction and extent of the rank order relationship between the variables
Kendall's tau
- direction and proportion of concordant \& discordant pairs

The most common formula for Kendall's Tau is shown on the right.**

The most common form is shown on the right.**					(${ }^{(C-D)}$
	\# practices	\# correct	rank \# practices X	rank \# correct Y	$\operatorname{tau}=\overline{n(n-1)}$
S1	6	21	4	5	
S2	2	18	1	4	To apply the
S3	4	7	2	1	formula, first
S4	9	15	5	3	convert values
S5	5	10	3	2	to ranks.
			rank	rank	
	\# practices	\# correct	\# practices	\# correct	
S2	2	18	1	4	Then, reorder the
S3	4	7	2	1	cases so they are in
S5	5	10	3	2	rank order for X .
S1	6	21	4	5	
S4	9	15	5	3	

[^0]

For each case...
$C=$ the number of cases listed below it that have a larger Y rank
(e.g., for $\mathrm{S} 2, \mathrm{C}=1 \rightarrow$ there is one case below it with a higher rank - S 1)
$D=$ the number of cases listed below it that have a smaller Y rank (e.g., for S2, $\mathrm{D}=3 \rightarrow$ there are 3 cases below it with a lower rank - S3 S5 S4)
$\operatorname{tau}=\frac{2(C-D)}{n(n-1)}$
$=\frac{2(6-4)}{5(5-1)}=\frac{4}{20}$
$=.20$

For small samples $(\mathrm{n}<20)$ tau is compared to tau-critical from tables. For larger samples, tau is transformed into Z for NHSTesting.

[^0]: **There are other forumlas for tau that are used when there are tied ranks.

