Statistics We Will Consider Parametric & Nonparametric Parametric Nonparametric Categorical Ordinal/~ND DV Interval/ND Univariate Statistics. median, IQR univariate stats mode, #cats mean, std Univariate Significance Tests qof X² 1-grp Mdn test univariate tests 1-arp t-test & Tests of Association X^2 association Pearson's r Spearman's r Statistics & models we will consider X² 2 bg t- / F-test M-W K-W Mdn Univariate stats Univariate statistical tests X^2 F-test K-W Mdn k bg • X² Tests for gualitative variables t- / F-test Parametric tests of Association 2wg Wil's Fried's McNem Crn's Pearson's correlation kwg F-test Fried's Crn's Nonparametric tests of Association Spearman's rank order correlation (Rho) Wil's -- Wilcoxin's Test Fried's -- Friedman's F-test M-W -- Mann-Whitney U-Test Kendal's Tau K-W -- Kruskal-Wallis Test McNem -- McNemar's X² Crn's - Cochran's Test Mdn -- Median Test Univariate Statistics for qualitative variables Central Tendency - "best guess of next case's value" Mode -- the most common score(s) • uni-, bi, multi-modal distributions are all possible Variability - "index of accuracy of next guess" • # categories • guessing whether or not the next person has a pet is more likely to be correct than guessing what kind of pet they have (including none) Shape - symmetry & proportional distribution doesn't make sense for gualitative variables • no prescribed value order

Parametric Univariate Statistics for ND/Int variables

Central Tendency - "best guess of next case's value"

- mean or arithmetic average \rightarrow M = Σ X / N
- 1st moment of the normal distribution formula
- since ND unimodal & symetrical \rightarrow mode = mean = mdn

Variability - "index of accuracy of next guess"

- sum of squares \rightarrow SS = $\Sigma(X M)^2$
- variance \rightarrow s² = SS / (N-1)
- standard deviation \rightarrow s = $\sqrt{s^2}$
- std preferred because is on same scale as the mean
- 2nd moment of the normal distribution formula
- average extent of deviation of each score from the mean

Parametric Univariate Statistics for ND/Int variables, cont.

Shape - "index of symmetry"

- skewness \rightarrow
- $\frac{\Sigma (X M)^3}{(N 1) * s^3}$
- 3rd moment of the normal distribution formula
- 0 = symmetrical, + = right-tailed, = left-tailed
- can't be skewed & ND

Shape – "index of proportional distribution"

• kurtosis \rightarrow M = Σ X / N $\frac{\Sigma (X - M)^4}{(N - 1) * s^4} - 3$

• 4th moment of the normal distribution formula

• 0 = prop dist as ND, + = leptokurtic, - = platakurtic

The four "moments" are all independent - all combos possible

• mean & std "are correct" as indices of central tendency & spread if skewness = 0 and kurtosic = 0

Nonparametric Univariate Statistics for ~ND/~Int variables

Central Tendency – "best guess of next case's value" • median \rightarrow middle-most value, 50th percentile, 2nd quartile

How to calculate the Mdn

1. Order data values	11 13 16 18 18 21 22		
2. Assign depth to each value, starting at each end	11 13 16 18 18 21 22 1 2 3 4 3 2 1		
3. Calculate median depth $D_{mdn} = (N+1) / 2$	(7 + 1) / 2 = 4		
4. Median = value at D_{mdn}	18		

4. Median = value at D_{mdn} (or average of 2 values @ D_{mdn} , if odd number of values) Nonparametric Univariate Statistics for ~ND/~Int variables

Variability - "index of accuracy of next guess"

• Inter-quartile range (IQR) \rightarrow range of middle 50%, 3rd-1st quartile

 How to calculate the IQR 1. Order & assign depth to each value 2. Calculate median depth D_{Mdn} = (N+1) / 2 3. Calculate quartile depth D_Q = (D_{Mdn} + 1) / 2 4. 1st Quartile value 5. 3rd Quartile value 6. IQR - 3rd - 1st Q values 	11 13 16 18 18 21 22 1 2 3 4 3 2 1 (7+1)/2 = 4 (4+1)/2 = 2.5 Ave of 13 & 16 = 14.5 Ave of 18 & 21 = 19.5 19.5 - 14.5 = 5	 Tests hypothesis about the distribution of category values of the population represented by the sample H0: is the hypothesized pop. distribution, based on either theoretically hypothesized distribution population distribution the sample is intended to represent E.g., 65% ugrads & 35% grads or 30% Frosh, 45% Soph & 25% Juniors RH: & H0: often the same ! binary and ordered category variables usually tested this way gof X² compares hypothesized distribution & sample dist. Retaining H0: sample dist. "equivalent to" population dist. Rejecting H0: sample dist. "is different from" population dist.
Data & formula for the gof X ²		
Frequency of different class ranks in sample	Frosh Soph Junior 25 55 42	
$X^2 = \sum \frac{(observe)}{2}$	ed – expected) ² expected	
Observed frequency – actual sa Expected frequency – based on • however expressed (absolu • must be converted to expect	mple values (25, 55 & 42) a priori hypothesis Ite or relative proportions, %s, etc) Ited frequencies	

Univariate Parametric Statistical Tests for qualitative variables

Goodness-of-fit X² test

Example of a 1-sample t-test $\overline{X} - \mu$	Univariate Nonparametric Statistical Tests for ~ND/~In			
The sample of 22 has a $SEM = (S^2 / H)$ mean of 21.3 and std of 4.3	1-sample median test			
 Determine the H0: μ value We expect that the sample comes from a population with an average age of 19 μ = 19 	Tests hypothesis about the median of the population represented by the sample H0: value is the hypothesized pop. median, based on either			
2. Compute SEM & t	 theoretically hypothesized mean 			
• SEM = $4.3^2/22$ = .84 • t = $(21.3 - 19)/.84$ = 2.74	 population mean the sample is intended to represent 			
3. Determine df & t-critical or p-value	• e.g., pop median age = 19			
 df = N-1 = 22 - 1 = 21 Using t-table t of as = 2.08 t of at at = 2.83 	• RH: & H0: often the same !			
• Using p-value calculator $p = .0123$	 1-sample median test compares hypothesized & sample mdns 			
4. NHST & such	Retaining H0: sample mdn "is equivalent to" population mdn			
 t > t_{2.05} but not t2,.05 so reject H0: at p = .05 or p = .0123 Looks like sample comes from population older than 19 	Rejecting H0: sample mdn "is different from" population mdn			
Example of a 1-sample median test age data \rightarrow 11 12 13 13 14 16 17 17 18 18 18 20 20 21 22 22				
 Obtain obtained & expected frequencies determine hypothesized median value → 19 sort cases in to above vs. below H0: median value Expected freq for each cell = ½ of sample → 8 				
2. Compute X^2 <19 >19 • $(11-8)^2/8 + (5-8)^2/8 = 2.25$				
3. Determine df & X ² -critical or p-value • df = k-1 = 2 - 1 = 1 • Using X ² -table $X^{2}_{1,05} = 3.84 X^{2}_{1,05} = 6.63$ • Using p-value calculator p = .1336				
 4. NHST & such X2 < X2 1, .05 & p > .05 so retain H0: 				
•				

Tests of Univariate ND

One use of gof X² and related univariate tests is to determine if data are distributed as a specific distribution, most often ND.

No matter what mean and std, a ND is defined by symmetry & proportional distribution

Using this latter idea, we can use a gof X² to test if the frequencies in segments of the distribution have the right proportions

• here we might use a k=6 gof X2 with expected frequencies based on % of 2.14, 13.59, 34.13, 34.13, 13.59 & 2.14

Tests of Univariate ND

One use of t-tests is to determine if data are distributed as a specific distribution, most often ND.

ND have skewness = 0 and kurtosis = 0

Testing Skewness	Standard Error of Skewness
t = skewness / SES	SES ≈ √(6/N)
Testing Kurtosis	Standard Error of Kurtosis
t = kurtosis / SEK	SEK ≈ √(24 / N)

Both of these are "more likely to find a significant divergence from ND, than that divergence is likely to distort the use of parametric statistics – especially with large N."

Statistical Tests of Association w/ qualitative variables

Pearson's X²

$$X^2 = \sum \frac{(\mathbf{o} \mathbf{f} - \mathbf{e} \mathbf{f})^2}{\mathbf{e} \mathbf{f}}$$

Can be 2x2, 2xk or kxk – depending upon the number of categories of each qualitative variable

- H0: There is no pattern of relationship between the two qualitative variables.
- degrees of freedom df = (#colums 1) * (#rows 1)
- Range of values 0 to ∞
- Reject Ho: If $X^2_{obtained} > X^2_{critical}$

Pearson's correlation is an index of the direction and extent of the linear relationship between the variables.

It is important to separate the statements...

- there is no linear relationship between the variables
- · there is no relationship between the variables
- · correlation only addresses the former!

Correlation can not differentiate between the two bivariate distributions shown below – both have no linear relationship

One of many formulas for r is shown on the right.

 $= \frac{\sum Z_X Z_Y}{N}$

O

- each person's "X" & "Y" scores are converted to Z-scores (M=0 & Std=1).
- r is calculated as the average Z-score cross product.
- +r results when most of the cross products are positive (both Zs + or both Zs -)
- -r results when most of the cross products are negative (one Z + & other Z-)

The most common formula for Spearman's Rho is shown on the right.

$$r = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)^2}$$

To apply the formula, first convert values to ranks.

	# practices	# correct	rank # practices	rank # correct	d	d²
S1 S2 S3 S4 S5	6 2 4 9 5	21 18 7 15 10	4 1 2 5 3	5 4 1 3 2	-1 -3 1 2 1	1 9 1 4 1
r =	$1 - \frac{6*16}{5*24} =$	180 = .2	20		Σd ² =	= 16

For small samples (n < 20) r is compared to r-critical from tables. For larger samples, r is transformed into t for NHSTesting.

Remember to express results in terms of the direction and extent of rank order relationship !

Nonparametric tests of Association using ~ND/~Int variables

Spearman's Correlation

- H0: No rank order relationship between the variables, in the population represented by the sample.
- degrees of freedom df = N 2
- range of values 1.00 to 1.00
- reject Ho: If $| r_{obtained} | > r_{critical}$

Computing Spearman's r

One way to compute Spearman's correlation is to convert X & Z values to ranks, and then correlate the ranks using Pearson's correlation formula, applying it to the ranked data. This demonstrates...

• rank data are "better behaved" (i.e., more interval & more ND) than value data

• Spearman's looks at whether or not there is a linear relationship between the ranks of the two variables

So, how does this strange-looking formula work? Especially the "6" ???

Remember that we're working with "rank order agreement" across variable – a much simpler thing than "linear relationship" because there are a finite number of rank order pairings possible!

$$r = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$$

If there is complete rank order agreement between the variables ...

→then, d = 0 for each case & $\Sigma d^2 = 0$ →so, r = 1-0

 \rightarrow r = 1 \rightarrow indicating a perfect rank-order correlation

If the rank order of the two variables is exactly reversed...

 $\rightarrow \Sigma d^2$ can be shown to be n(n²-1)/3

 \rightarrow so, r = 1 - 1

→ the equation numerator becomes $6 * n(n^2 - 1)/3 = 2 * n(n^2 - 1)$ → so, r = 1 - 2 → r = -1 → indicating a perfect reverse rank order correlation

If there is no rank order agreement of the two variables ...

→Σd² can be shown to be $n(n^2-1)/6$ →the equation numerator becomes 6 * $n(n^2 - 1)/6 = n(n^2 - 1)$

 \rightarrow r = 0 \rightarrow indicating no rank order correlation

Ō

Nonparametric tests of Association using ~ND/~Int variables

Kendall's Tau

- •H0: No rank order concordance between the variables, in the population represented by the sample.
- degrees of freedom df = N 2
- range of values 1.00 to 1.00
- reject Ho: If | robtained | > rcritical

All three correlations have the same mathematical range (-1, 1).

But each has an importantly different interpretation.

Pearson's correlation

• direction and extent of the linear relationship between the variables Spearman's correlation

- direction and extent of the rank order relationship between the variables
- Kendall's tau
 - · direction and proportion of concordant & discordant pairs

The most common formula for Kendall's Tau 2(C-D) is shown on the right.** tau = rank rank n(n -1) # practices # correct # practices # correct Х Υ 5 S1 6 21 4 S2 2 1 4 18 To apply the 4 2 S3 1 7 formula. first S4 9 5 3 15 convert values S5 5 10 3 2 to ranks. rank rank # practices # correct # practices # correct Х Υ Then, reorder the S2 2 18 1 4 cases so they are in S3 4 2 1 7 rank order for X. S5 5 3 2 10 S1 6 5 21 4 **S**4 9 5 3 15

**There are other forumlas for tau that are used when there are tied ranks.

	# practices ` X	# correct Y	rank # practices X	rank # correct Y	С	D
S2	2	18	1	4	1	3
S3	4	7	2	1	3	0
S5	5	10	3	2	2	0
S1	6	21	4	5	0	1
S4	9	15	5	3		
_					sum 6	4
Ear	anah anan					

For each case... C = the number of cases listed below it that have a larger Y rank

(e.g., for S2, C=1 → there is one case below it with a higher rank - S1)
D = the number of cases listed below it that have a smaller Y rank
(e.g., for S2, D=3 → there are 3 cases below it with a lower rank - S3 S5 S4)

tau =
$$\frac{2(C-D)}{n(n-1)}$$
 = $\frac{2(6-4)}{5(5-1)}$ = $\frac{4}{20}$ = .20

For small samples (n < 20) tau is compared to tau-critical from tables. For larger samples, tau is transformed into Z for NHSTesting.