Parametric \& Nonparametric
 Models for Between Groups \&
 Within-Groups Comparisons

- X^{2} tests
- BG Parametric \& Nonparametric Tests
- Mann-Whitney U-test
- Kruskal-Wallis test
- Median test
- WG Parametric \& Nonparametric Tests
-WG Designs \& WG RH:/RQ:
- McNemar's test
- Cochran's tests
- WG t-test \& ANOVA
- Wilcoxin's test
- Friedman's F-test

Statistics We Will Conside

DV	Categorical	Parametric Interval/ND	Nonparametric Ordinal/~ND
univariate stats	mode, \#cats	mean, std	median, IQR
univariate tests	gof X^{2}	1-grp t-test	1-grp Mdn test
association	χ^{2}	Pearson's r	Spearman's r
			Kendall's Tau
2 bg	X^{2}	t- / F-test	M-W K-W Mdn
k bg	X^{2}	F-test	K-W Mdn
2 wg	McNem Crn's	t- / F-test	Wil's Fried's
kwg	Crn's	F-test	Friedman's
M-W -- Mann-Whitney U-Test Wil's -- Wilcoxin's Test Fried's -- Friedman's F-tes K-W -- Kruskal-Wallis Test			

The expected frequency for each cell is computed assuming that the HO : is true - that there is no relationship between the row and column variables.

If so, the frequency of each cell can be computed from the frequency of the associated rows \& columns.

Col 1 Col 2

Usually the column variable is the grouping variable and the row variable is the DV.

$$
\text { Col } 1 \quad \text { Col } 2
$$

$$
\begin{aligned}
X^{2} & =\sum \frac{(\mathrm{of}-\mathrm{e} f)^{2}}{\mathrm{ef}} \\
\mathrm{df} & =(2-1)^{*}(2-1)=1
\end{aligned}
$$

$\mathrm{X}^{2}{ }_{1,05}=3.84$
$X^{2}{ }_{1, .01}=6.63$
$p=.0002$ using online p-value calculator

So, we would reject HO : and conclude that the two groups have different distributions of responses of the qualitative DV.

Parametric tests for BG Designs using ND/Int variables

t-tests

- H0: Populations represented by the IV conditions have the same mean DV.
- degrees of freedom $d f=N-2$
- Range of values $-\infty$ to ∞
- Reject Ho: If $\left|t_{\text {obtained }}\right|>t_{\text {critical }}$
- Assumptions
- data are measured on an interval scale
- DV values from both groups come from ND with equal STD

ANOVA

- H0: Populations represented by the IV conditions have the same mean DV.
- degrees of freedom df numerator $=\mathrm{k}-1$, denominator $=\mathrm{N}-\mathrm{k}$
- Range of values 0 to ∞
- Reject Ho: If $\mathrm{F}_{\text {obtained }}>\mathrm{F}_{\text {critical }}$
- Assumptions
- data are measured on an interval scale
- DV values from both groups come from ND with equal STD

The nonparametric BG models we will examine, and the parametric BG models with which they are most similar...

2-BG Comparisons

Mann-Whitney U test
between groups t-test

2- or k-BG Comparisons
Kruskal-Wallis test
Median test
between groups ANOVA
between groups ANOVA

Let's start with a review of applying a between groups t-test
Here are the data from such a design :
Qual variable is whether or not subject has a 2-5 year old Quant variable is "liking rating of Barney" (1-10 scale)

No Toddlertoddler		1+ Toddlers	
s1 2 s3 6 s2 4 s5 8 s4 6 s6 9 s8 7 s7 10\quadM $=4.75$	$M=8.25$		

The BG t-test would be used to compare these group means.

When we perform this t-test ...

As you know, the HO : is that the two groups have the same mean on the quantitative DV, but we also ...

1. Assume that the quantitative variable is measured on a interval scale -- that the difference between the ratings of " 2 " and " 4 " mean the same thing as the difference between the ratings of " 8 " and " 6 ".
2. Assume that the quant variable is normally distributed.
3. Assume that the two samples have the same variability (homogeneity of variance assumption)

Given these assumptions, we can use a t-test tp assess the

$$
\mathrm{HO}: \mathrm{M}_{1}=\mathrm{M}_{2}
$$

If we want to "avoid" these first two assumptions, we can apply the Mann-Whitney U-test

The test does not depend upon the interval properties of the data, only their ordinal properties -- and so we will convert the values to ranks

- lower scores have lower ranks, and vice versa
- e.g. \#1 values $\begin{array}{lllll}10 & 11 & 13 & 14 & 16\end{array}$ ranks $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
- Tied values given the "average rank" of all scores with that value
-e.g. \#2 values 1012121316
ranks 12.52 .545
- e.g., \#3 values 912131313 ranks $\begin{array}{llllll}1 & 2 & 4 & 4 & 4\end{array}$

Preparing these data for analysis as ranks...

No Toddlestoddler 1+ Toddlers rating ranks rating ranks					
s1	2	1	s3	6	3.5
s2	4	2	s5	8	6
s4	6	3.5	s6	9	7
s8	7	5	s7	10	8

$\Sigma=11.5 \quad \Sigma=24.5$

All the values are ranked at once -ignoring which condition each "S" was in.

Notice the group with the higher values has the higher summed ranks

The " U " statistic is computed from the summed ranks. $\mathrm{U}=0$ when the summed ranks for the two groups are the same (HO :)

There are two different "versions" of the H0: for the Mann-Whitney U-test, depending upon which text you read.

The "older" version reads:
H0: The samples represent populations with the same distributions of scores.

Under this $\mathrm{HO}:$, we might find a significant U because the samples from the two populations differ in terms of their:

- centers (medians - with rank data)
- variability or spread
- shape or skewness

This is a very "general" HO : and rejecting it provides little info.
Also, this HO : is not strongly parallel to that of the t-test (which is specifically about mean differences)

Over time, "another" H0: has emerged, and is more commonly seen in textbooks today:

H0: The two samples represent populations with the same median (assuming these populations have distributions with identical variability and shape).

You can see that this HO :

- increases the specificity of the HO : by making assumptions (That's how it works - another one of those "trade-offs")
- is more parallel to the HO : of the t-test (both are about "centers")
- has essentially the same distribution assumptions as the t-test (equal variability and shape)

Finally, there are two "forms" of the Mann-Whitney U-test:
With smaller samples ($\mathrm{n}<20$ for both groups)

- compare the summed ranks fo the two groups to compute the test statistic -- U
-Compare the $\mathrm{W}_{\text {obtained }}$ with a $\mathrm{W}_{\text {critical }}$ that is determined based on the sample size

With larger samples ($n>20$)

- with these larger samples the distribution of U-obtained values approximates a normal distribution
- a Z-test is used to compare the Uobtained with the Ucritical
- the $\mathrm{Z}_{\text {obtained }}$ is compared to a critical value of $1.96(\mathrm{p}=.05)$

Nonparametric tests for BG Designs using ~ND/~Int variables

The Kruskal- Wallis test

- applies this same basic idea as the Mann-Whitney Utest (comparing summed ranks)
- can be used to compare any number of groups.
- DV values are converted to rankings
- ignoring group membership
- assigning average rank values to tied scores
- Score ranks are summed within each group and used to compute a summary statistic " H ", which is compared to a critical value obtained from a X^{2} distribution to test HO :
- groups with higher values will have higher summed ranks
- if the groups have about the same values, they will have about the same summed ranks

H0: has same two "versions" as Mann-Whitney U-test

- groups represent populations with same score distributions
- groups represent pops with same median (assuming these populations have distributions with identical variability and shape).
- Rejecting H0: tells only that there is some pattern of distribution/median difference among the groups
- specifying this pattern requires pairwise K-W follow-up analyses
- Bonferroni correction -- $\mathrm{p}_{\text {critical }}=(.05 /$ \# pairwise comps $)$

Nonparametric tests for BG Designs using ~ND/~Int variables

Median Test -- also for comparing 2 or multiple groups
The intent of this test was to compare the medians of the groups, without the "distributions are equivalent" assumptions of the Mann-Whitney and Kruskal-Wallis tests

This was done in a very creative way

- compute the grand median (ignoring group membership)
- for each group, determine which members have scores above the grand median, and which have scores below the grand median

Repeated measures designs...
There are two major kinds of these designs:

1) same cases measured on the same variable at different times or under different conditions

- pre-test vs. post-test scores of clients receiving therapy
- performance scores under feedback vs. no feedback conds
- \% who "pass" before versus after remedial training

2) same cases measured at one time under one condition, using different (yet comparable) measures

- comparing math and reading scores (both T-scores, with mean=50 and std=10)
- number of "omissions" (words left out) and "intrusions" (words that shouldn't have been included) in a word recall task
- \% who "pass" using two different tests

Repeated measures designs...
There is really a third related kind of design:
3) non-independent groups of cases measured on the same variable at different times or under different conditions

- matched-groups designs
- snow-ball sampling over time

Statistically speaking, groups-comparisons analyses divide into 2 kinds"

- independent groups designs \rightarrow Between Groups designs
- dependent groups designs \rightarrow within-groups \& Matchedgroups designs

For all dependent groups designs, the non-independence of the groups allows the separation of variance due to "differences among people" from variance due to "unknown causes" (error or residual variance)

For repeated measures designs (especially of the first 2 kinds), there are two different types of research hypotheses or questions that might be posed...

1) Do the measures have different means (dif resp dist for qual DVs)

- are post-test scores higher than pre-test scores?
- is performance better with feedback than without it?
- are reading scores higher than math scores?
- are there more omissions than intrusions?

2) Are the measures associated?

- are the folx with the highest pre-test scores also the ones with the highest post-test scores?
- is performance with feedback predictable based on performance without feedback?
- are math scores and reading scores correlated?
- do participants who make more omissions also tend to make more intrusions?

So, taken together there are four "kinds of" repeated measures analyses. Each is jointly determined by the type of design and the type of research hypothesis/question. Like this...

Type of Hypothesis/Question

	Type of Design	mean difference
	association	
Different times or situations	pre-test < post-test	pre-test \& post-test
Different measures	math < spelling	math \& spelling

But... All the examples so far have used quantitative variables. Qualitative variables could be used with each type of repeated measures design (dif times vs. dif measures)
Consider the difference between the following examples of repeated measures designs using a qualitative (binary) response or outcome variable

- The same \% of students will be identified as needing remedial instruction at the beginning and end of the semester (dif times).
-The same students will be identified as needing remedial instruction at the end of the semester as at the beginning (dif times)
- The same \% of students will be identified as needing remedial instruction based on teacher evaluations as based on a standardized test (dif measures)
-The same students will be identified as needing remedial instruction based on teacher evaluations as based on a standardized test (dif measures)

So, we have to expand our thinking to include 8 situations...

Statistical Tests for WG Designs w/ qualitative variables

McNemar's test

Of all these tests, McNemar's has the most specific application...

- are two qualitative variable related -- Pearson's X^{2}
- do groups have differences on a qual variable -- Pearson's X²
- does a group change \% on a binary variable -- Cochran's
- is the the relationship between the variables revealed by an asymmetrical pattern of "disagreements" -McNemar's
e.g., more cases are classified as "pass" by the computer test but "fail" by the paper test than are classified as "fail" by the computer test but "pass" by the paper test.

	computer test	
paper test	pass	fail
pass	40	4
fail	12	32

Cond \#1

Cond \#2
value 1
value 2

$$
X^{2}=\frac{(b-c)^{2}}{(b+c)}
$$

McNemar's always has df=1
computer test
paper test
pass
fail

pass	fail
40	4
12	32

$$
\begin{aligned}
X^{2} & =\frac{(4-12)^{2}}{(4+12)} \\
& =4
\end{aligned}
$$

Compare the obtained X^{2} with $\mathrm{X}^{2}{ }_{1, .05}=3.84$. We would reject H0: and conclude that there is a relationship between what performance on the paper test and performance on the computer test \& that more uniquely fail the paper test than uniquely fail the computer test.

Cochran's Q-test - can be applied to 2 or k-groups

The simplest "qualitative variable" situation is when the variable is binary. Then "changes in response distribution" becomes the much simple "changes in \%".
Begin the computation of Q by arranging the data with each case on a separate row. $1=$ pass $0=$ fail

	pretest	posttest
S1	0	1
S2	0	1
S2	0	0
S2	1	1
S5	0	0
G	1	3
G2	1	9

Compute the sum for each column (G) and it's square (G^{2})

retention	L	L^{2}
1	2	4
0	1	1
1	1	1
1	3	9
1	1	1
4		
16		
	$\left.\begin{array}{l}\text { Compute the sum for each } \\ \text { row }(\mathrm{L})\end{array}\right)$ and its square $\left(\mathrm{L}^{2}\right)$	

	pretest	posttest	retention	L	L^{2}
S1	0	1	1	2	4
S2	0	1	0	1	1
S2	0	0	1	1	,
S2	1	1	1	3	9
S5	0	0	1	1	1
G	1	3	4		= \# conditions
G^{2}	1	9	16		
$(k-1)^{*}\left[\left(k^{*} \Sigma G^{2}\right)-(\Sigma G)^{2}\right]$			$(3-1)^{*}\left[\left(3^{*}(1+9+16)\right)-(1+3+4)^{2}\right]$		
$\left(k^{*} \Sigma \mathrm{~L}\right)-\Sigma \mathrm{L}^{2}$			$(3$ * $(2+1+1+3+1))-(4+1+1+9+1)$		

Q is compared to X^{2} critical based on $\mathrm{df}=\mathrm{k}-1 \quad \mathrm{X}^{2}{ }_{2, .05}=7.81$

So we would retain HO : of no \% difference across the design conditions.

Parametric tests for WG Designs using ND/Int variables

t-tests

- H0: Populations represented by the IV conditions have the same mean DV.
- degrees of freedom df = N-1
- Range of values $-\infty$ to ∞
- Reject Ho: If $\left|t_{\text {obtained }}\right|>t_{\text {critical }}$
- Assumptions
- data are measured on an interval scale
- DV values from both groups come from ND \& have equal STDs

ANOVA

- H0: Populations represented by the IV conditions have the same mean DV.
- degrees of freedom df numerator $=k-1$, denominator $=\mathrm{N}-\mathrm{k}$
- Range of values 0 to ∞
- Reject Ho: If $F_{\text {obtained }}>F_{\text {critical }}$
- Assumptions
- data are measured on an interval scale
- DV values from both groups come from ND with equal STD
- for $k>2$ - data from any pair of conditions are equally correlated

Nonparametric tests for WG Designs using ~ND/~Int variables

- within-subjects design - same subjects giving data under each of two or more conditions
- comparison of two or more "comparable" variables -- same subjects giving data on two variables (same/dif time)
- matched-groups design -- matched groups of two or more members, each in one of the conditions

The nonparametric RM models we will examine and their closest parametric RM counterparts...

2-WG Comparisons
Wilcoxin's Test \quad dependent t-test
Friedman's ANOVA or k-WG Comparisons

Let's start with a review of applying a within groups t-test
Here are the data from such a design :
IV is Before vs. After the child "discovers" Barney (and watches it incessantly, exposing you to it as well) so..

1st Quant variable is $1-10$ rating "before" discovery
2nd Quant variable is $1-10$ rating "after discovery"

Before		After		
s1	2	$s 1$	6	
s2	4	$s 2$	8	-4
s3	6	$s 3$	9	
$s 4$	7	$s 4$	10	-4
	$M=4.75$	$M=8.25$	-3	

A WG t-test can be computed as a single-sample t-test using the differences between an individual's scores from the 2 design conditions.

- Rejecting the $\mathrm{HO}: \mathrm{M}_{\mathrm{d}}=0$, is rejecting the $\mathrm{H} 0: \mathrm{M}_{\text {before }}=\mathrm{M}_{\text {atter }}$
- other formulas exist

When using a WG t-test (no matter what computational form_ the assumption of interval measurement properties is even "more assuming" than for the BG design. We assume ...

- that each person's ratings are equally spaced -- that the difference between ratings given by S 1 of " 3 " and " 5 " mean the same thing as the difference between their ratings of " 8 " and " 10 " ???
- that different person's rating are equally spaced -- that the difference between ratings given by S 1 of " 3 " and " 5 " mean the same thing as the difference between ratings of " 8 " and " 10 " given by S2 ???

Nonparametric tests for WG Designs using $\sim N D / \sim \operatorname{Int}$ variables

Wilcoxin's Test

If we want to avoid some assumptions, we can apply a nonparametric test. To do that we ...

- Compute the differences between each person's scores
- Determine the "signed ranks" of the differences
- Compute the summary statistic W from the signed ranks

Before	After		
s1	2	$s 1$	5
s2	4	$s 2$	8
s3	6	$s 3$	9
s4	9	$s 4$	7

Difference	Signed Ranks
3	2.5
4	4
3	2.5
-2	-1

The " W " statistic is computed from the signed ranks. $\mathrm{W}=0$ when the signed ranks for the two groups are the same (HO O)

There are two different "versions" of the H0: for the Wilcoxin's test, depending upon which text you read.

The "older" version reads:
H0: The two sets of scores represent a population with the same distribution of scores under the two conditions.

Under this HO :, we might find a significant U because the samples from the two situations differ in terms of their:

- centers (medians - with rank data)
- variability or spread
- shape or skewness

This is a very "general" HO : and rejecting it provides little info.
Also, this HO : is not strongly parallel to that of the t-test (that is specifically about mean differences)

Over time, "another" H0: has emerged, and is more commonly seen in textbooks today:

H0: The two sets of scores represent a population with the same median under the two conditions (assuming these populations have distributions with identical variability and shape).

You can see that this H 0 :

- increases the specificity of the HO : by making assumptions (That's how it works - another one of those "trade-offs")
- is more parallel to the HO : of the t -test (both are about "centers")
- has essentially the same distribution assumptions as the t-test (equal variability and shape)

Finally, there are also "forms" of the Wilcoxin's Test:
With smaller samples ($\mathrm{N}<10-50$ depending upon the source ??)

- Compare the $\mathrm{W}_{\text {obtained }}$ with a $\mathrm{W}_{\text {critical }}$ that is determined based on the sample size

With larger samples ($\mathrm{N}>10-50$)

- with these larger samples the distribution of Uobtained values approximates a normal distribution
- a Z-test is used to compare the Uobtained with the Ucritical
- the $\mathrm{Z}_{\text {obtained }}$ is compared to a critical value of $1.96(\mathrm{p}=.05)$

You should notice considerable similarity between the MannWhitney U-test and the Wilcoxin -- in fact, there are BG and RM versions of each -- so be sure to ask the "version" whenever you hear about one of these tests.

Nonparametric tests for WG Designs using ~ND/~Int variables

Friedman's test applies this same basic idea (comparing ranks), but can be used to compare any number of groups.

- Each subject's DV values are converted to rankings (across IV conditions)
- Score ranks are summed within each IV Condition and used to compute a summary statistic " F ", which is compared to a critical value to test HO :
- E.g., -- more of Barney . . . (from different "stages of exposure")

	Before		After 6 months		After 12 months	
	DV	rank	DV	rank	DV	rank
S1	3	1	7	3	5	2
S2	5	1	9	3	6	2
S3	4	2	6	3	2	1
S4	3	1	6	2	9	3

- H0: has same two "versions" as the other nonparametric tests
- DVs from populations with same score distributions
- DVs from populations with same median (assuming ...)
- Rejecting H0: requires pairwise follow-up analyses
- Bonferroni correction -- $\mathrm{p}_{\text {critical }}=(.05 / \#$ pairwise comps)
- Finally, there are also "forms" of Friedman's Test:
- With smaller samples (k < $6 \mathrm{~N}<14$)
- Compare the $F_{\text {obtained }}$ with a $F_{\text {critical }}$ that is determined based on the sample size \& number of conditions
- With larger samples ($k>6$ or $N>14$)
- the $\mathrm{F}_{\text {obtained }}$ is compared to a X^{2} critical value

