
Regression Model Building -- we’ve talked about two kinds..

Descriptive Modeling
• explication of the relationships between the set of predictors and 

the criterion variable (90-95%)
• completeness is the goal -- often requiring the combination of 

information from simple correlations and various multiple 
regression models

Predictive Modeling
• are going to compute y’ values to make decisions about people 

(5-10%)

• efficiency is the goal, want the “best model” with the “fewest 
predictors”

Interpretation of simple correlations, of full models, and of 
comparisons of nested and non-nested models are commonly 
combined to yield descriptive modeling -- remember, the interest 
is in completely explicating the patterns of relationship between 
the criterion variable and the predictors.  Theory often plays a 
large part, directing the variables we choose and the models we 
compare.

When interested in predictive modeling, we want 1 model that 
we will use to compute y’ values for future individuals. Theory can 
help, cost-analysis is often important, collinearity is to be avoided 
(because it reduces efficiency).

The various “automated regression procedures” were designed for 
predictive model building (not for descriptive modeling).

The four most commonly used “automated” procedures are…

Forward Inclusion -- start with the best predictor and add
predictors to get a “best model”

Backward Deletion  -- start with a full model and delete predictors 
to get a “best model”

Forward Stepwise Inclusions -- a combination of the first two

All-subsets Regression -- literally getting all  1-, 2-, 3-, ... k-
predictors models for comparison



Forward modeling

Step 1 the first predictor in the model is the “best single predictor”

Select the predictor with the numerically largest simple 
correlation with the criterion  -- if it is a significant 
correlation

ry,x1 vs.    ry,x2 vs.   ry,x3 vs. ry,x4 

by using this procedure we are sure that the initial model “works”

Step 2 the next predictor in the model is the one that will 
“contribute the most” -- with two equivalent definitions

1.  The 2-predictor model (including the first predictor) with the 
numerically largest R² -- if the R² is significant and 
significantly larger than the r² from the first step

R2
y.x3,x1    vs.   R2

y.x3,x2 vs.   R2
y.x3,x4 

2.  Add to the model that predictor with the highest semi-partial 
correlation with the criterion, controlling the criterion for the 
predictor already in the model -- if the semi-partial is 

significant

ry(x1.x3) vs.    ry(x2.x3) vs.     ry.(x4.x3) 

by using this procedure we are sure the 2-predictor model “works” 
and “works better than the 1-predictor model”

All subsequent steps -- the next predictor in the model is the one    
that will  “contribute the most” -- with two equivalent definitions

1.  The 2-predictor model (including the first predictor) with the 
numerically largest R² -- if the R² is significant and 
significantly larger than the R² from the previous step

R2
y.x3,x2,x1 vs.     R2

y.x3,x2,x4 

2.  Add to the model that predictor with the highest semi-partial 
correlation with the criterion, controlling the criterion for the 
predictors already in the model -- if the semi-partial is 

significant

r y.(x1.x3,x2) vs.      r y.(x4.x3,x2) 
by using this procedure, we are sure that each model “works” and 

“works better than the one before it”



When to quit ??? When no additional predictor will significantly 
increase the R² (same as when no multiple semi-partial is 
significant).

Difficulties with the forward inclusion model…

•The major potential problem is “over-inclusion” -- a predictor that 
contributes to a smaller (earlier) model fails to continue to 
contribute as the model gets larger (with increased 
collinearity), but the predictor stays in the model.

•Fairly small “variations” in the correlation matrix can lead to very 
different final models -- models often differ on two “splits” of 
the same sample 

•The resulting model may not be the “best” -- there may be 
another model with the same # predictors but larger R², etc

All of these problems are exacerbated by increased collinearity !!

Backward Deletion

Step 1 -- start with the full model (all predictors) -- if the R² is 
significant.  Consider the regression weights of this model.

Step 2 -- remove from the model that predictor that “contributes 
the least”

Delete that predictor with the largest p-value associated 
with its regression (b) weight -- if that p-value is greater 
than .05.  (The idea is … the predictor with the largest p-
value is the one “least likely to not be contributing to the 
model” in the population)

bx1(p=.08) vs. bx2(p=.02) vs. bx3(p=.02) vs. bx4(p=.27)

by using this procedure, we know that each model works as well 
as the previous one (R² numerically, but not statistically smaller)

On all subsequent steps -- the next predictor dropped from the 
model is that with the largest (non-significant) regression weight.

bx1(p=.21) vs. bx2(p=.14) vs. bx3(p=.012)

When to quit ?? When all the predictors in the model are 
contributing to the model.

Difficulties with the backward deletion model…

•The major potential problem is “under-inclusion” -- a predictor 
that is deleted from a larger (earlier) model would 
contribute to a smaller model, but isn’t “re-included”.

•Fairly small “variations” in the correlation matrix can lead to very 
different final models -- models often differ on two “splits” of 
the same sample 

•The resulting model may not be the “best” -- there may be 
another model with the same # predictors but larger R², etc

All of these problems are exacerbated by increased collinearity !!



Forward Stepwise Modeling

Step 1 the first predictor in the model is the “best single predictor”
(same as the forward inclusion model)

Select the predictor with the numerically largest simple 
correlation with the criterion  -- if it is a significant 
correlation

by using this procedure we are sure that the initial model “works”

Step 2 the next predictor in the model is the one that will 
“contribute the most” -- with two equivalent definitions
(same as the forward inclusion model)

1.  The 2-predictor model (including the first predictor) with the 
numerically largest R² -- if the R² is significant and 
significantly larger than the r² from the first step

2.  Add to the model that predictor with the highest semi-partial 
correlation with the criterion, controlling the criterion for the 
predictor already in the model -- if the semi-partial is 

significant

by using this procedure we are sure the 2-predictor model “works” 
and “works better than the 1-predictor model”

On all Subsequent steps (each having two parts)

a. -- remove from the model that predictor that “contributes 
the least” (same as the backward deletion model)

Delete that predictor with the largest p-value associated 
with its regression (b) weight -- if that p-value is greater 
than .05.  (The idea is … the predictor with the largest p-
value is the one “least likely to not be contributing to the 
model” in the population)

-- if a predictor is deleted, look for a second (third, etc) that 
should also be deleted, before moving on to part b.

by using this procedure, we are sure that all the predictors 
in the model are contributing before adding any additional 

predictors to the model



b. the next predictor in the model is the one that will 
“contribute the most”  ( same as for forward inclusion ) --
with two equivalent definitions

1.  The 2-predictor model (including the first predictor) with the 
numerically largest R² -- if the R² is significant and 
significantly larger than the r² from the first step

2.  Add to the model that predictor with the highest semi-partial 
correlation with the criterion, controlling the criterion for the 
predictor already in the model -- if the semi-partial is 

significant

by using this procedure we are sure the model with the added 
predictor “works” and “works better than the model without it”

When to quit ? -- when BOTH of two conditions exist…

1.  All predictors included in the model are contributing to it

2. None of the predictors that are not in the model would
contribute if they were added.

by using this procedure we avoid both over-inclusion and under-
inclusion

Difficulty with the forward inclusion model

•The resulting model may not be the “best” -- there may be 
another model with the same # predictors but larger R²

•Assumes that the best model is found by starting with the best 
single predictor

This problem is exacerbated by increased collinearity !!

All subsets regression

Just  what it sounds like…   Get all 1-predictor models, all 2-
predictor models, all 3-predictor models, etc.

Difficulties with all subsets regression

• generates an awful lot of models (none of which were 
theoretically determined)

• Many of the models will be very comparable in R² but have very 
different theoretical interpretations

• not available in most stats packages and wearisome to do by 
hand

All of these problems are exacerbated by increased collinearity !!



Problems of forward, backward and stepwise models …

All of these procedures were designed for construction of non-
theoretical models, and they rarely provide direct tests of the sorts 
of hypotheses we have !!!

Each procedure has a different definition of “best model” that is 
tied to the particular selection and/or deletion rules that are used.

All decisions about which variables are “potential contributors” are 
made based on significance tests (not really a problem, but …)

All selection/deletion decisions between two or more “potential 
contributors” are made NUMERICALLY, and so, may result in very 
differently interpreted models with small differences in sampling 
variability.

Taken together, these problem often lead to …

Different procedures (forward, backward, stepwise) often produce 
different “best models” -- even when starting from the same set of 
predictors.

Different models “perform less differently” (in terms of R²) than 
they appear (based on their different predictor memberships).

So...

All-subsets models often provide a useful “wake-up call” for 
recognizing the limited performance difference among models that 
may seem very different.

Finally…

None of these procedures are very useful for DESCRIPTIVE 
purposes, which usually require careful description of the simple 
correlations, full model, and various model comparisons to be 
usefully complete !!

(Classic “Trick”) Question -- When do you not need to even 
perform a simple regression model to make a prediction based on 
the single predictor variable?

Hint:  Remember that the simple regression formula “just” 
changes the scale of the predictor into a “mimic” of the criterion --
those folks with higher scores on x will have higher scores on the 
y’ and those with lower scores on x will have lower scores on y’.

Answer:  When the decision rule is to take the top (or bottom) n 
candidates.    Say you want the “five best” candidates based on a 
single predictor -- the five with the highest x values will be those 
with the five highest y’ values !!

Will this apply to multiple regression modeling??


