Power Analysis

- Subject-to-variable ratio
- Selecting sample size for significance
- •Power & Stability Considerations
- Useful types of power analyses
	- simple correlations
	- correlation differences between populations (groups, etc.)
	- differences between correlated correlations
	- multiple correlation models
	- differences between nested multiple correlation models
	- semi-partial and partial correlations
	- differences between non-nested multiple correlation models
	- differences between multiple regression models for different groups
	- Differences between multiple regression models for different criteria
- •Determining Sample Size for "the study"

Sample Size & Multiple Regression

- The general admonition that "larger samples are better" has considerable merit, but limited utility…
- R² will always be 1.00 if k = N-1 $\,$ (it's a math thing)
- \bullet R² will usually be "too large" if the sample size is "too small" (same principle but operating on a lesser scale)
- R² will always be larger on the modeling sample than on any replication using the same regression weights
- R² & b-values will replicate better or poorer, depending upon the stability of the correlation matrix values
- $R²$ & b-values of all predictors may vary with poor stability of any portion of the correlation matrix (any subset of predictors)
- F- & t-test p-values will vary with the stability & power of the sample size – both modeling and replication samples

Subject-to-Variable Ratio

How many participants should we have for a given number of predictors? -- usually refers to the full model

The subject/variable ratio has been an attempt to ensure that the sample is "large enough" to minimize "parameter inflation" and improve "replicability".

Here are some common admonitions..

- 20 participants per predictor
- a minimum of 100 participants, plus 10 per predictor
- 10 participants per predictor
- 200 participants for up to k=10 predictors and 300 if k>10
- 1000 participants per predictor
- a minimum of 2000 participants, + 1000 for each 5 predictors

As is often the case, different rules of thumb have grown out of different research traditions, for example…

- chemistry, which works with very reliable measures and stable populations, calls for very small s/v ratios
- biology, also working largely with "real measurements" (length, weight, behavioral counts) often calls for small s/v ratios
- economics, fairly stable measures and very large (cheap) databases often calls for huge s/v ratios
- education, often under considerable legal and political scrutiny, (data vary in quality) often calls for fairly large s/v ratios
- psychology, with self-report measures of limited quality, but costly data-collection procedures, often "shaves" the s/v ratio a bit

Problems with Subject-to-variable ratio

- #1 neither n, N nor N/k is used to compute $R²$ or b-values
- R^{z} & b/-values are computed from the correlation matrix
- N is used to compute the significance test of the R^2 & each b-weight

#2 Statistical Power Analyses involves more than N & k We know from even rudimentary treatments of statistical power analysis that there are four attributes of a statistical test that are inextricably intertwined for the purposes of NHST…

- acceptable Type I error rate (chance of a "false alarm")
- acceptable Type II error rate (chance of a "miss")
- size of the effect being tested for
- sample size

We will "forsake" the subjects-to-variables ratio for more formal power analyses & also consider the stability of parameter estimates (especially when we expect large effect sizes).

"Selecting S for significance"

• estimate the pairwise effect size, say r = .35

• using the correlation critical-value table, select a sample size for which that effect size will be significant

• r = .35 will be significant if df = 30 or S=32

leads to

We know from even rudimentary treatments of statistical power analysis that there are four attributes of a statistical test that drive the issue of selecting the sample size needed a particular analysis…

- acceptable Type I error rate (chance of a "false alarm")
- acceptable Type II error rate (chance of a "miss")
- size of the effect being tested for (.1=small, .3=med, .5=large)
- sample size for that analysis

We also know that power is not the only basis for determining "N"

The stability/variability of each r in the correlation matrix is related to N

```
Std of r \, = \, 1 / \,\sqrt (N-3), so \ldotsN=50 r +/- .146 N=100 r +/- .101 N=200 r +/- .07 N=300 r +/- .058 N=500 r +/- .045N=1000 r +/- .031
```
Power Analysis for Simple Correlation

On the following page is a copy of the power analysis table from the first portion of the course. Some practice...

```
Post hocI found r (22) = 0.30, p < 0.05, what's the chance I made a
             Type II error ??
       N = 24  Power = .30  Chance Type II error
A priori
#1 I expect my correlation will be about .25, & want power = .90
      sample size should be = 
#2 Expect correlations of .30, .45, and .20 from my three
                                   Chance Type II error 70
                                  160
```

```
predictors & want power = .80
```
sample size should be = 191, based on lowest r = .20Ω Power Analysis for Simple Correlation

Post hoc

I found $r(22) = .30$, $p > .05$, what's the chance I made a Type II error ??

$$
N = {}^{24}
$$
 Power = ${}^{.30}$ Change Type II error .70

A priori

#1 I expect my correlation will be about .25, & want power = .90

sample size should be = 160

#2 Expect correlations of .30, .45, and .20 from my three predictors & want power = .80

sample size should be = 191, based on lowest r = .20

Putting Stability & Power together to determine the sample size

Power analysis for correlation differences between populations

• the Bad News

- this is a very weak test -- requires roughly 2x the N to test for a particular r-r value than to test for a comparable r-value
- the Good News
	- the test is commonly used, well-understood and tables have been constructed for our enjoyment (from Cohen, 1988)

Important! Decide if you are comparing r or |r| values

Power Analysis for Comparing "Correlated Correlations"

It takes much more power to test the H0: about correlations differences than to test the H0: about each r = .00

- Most discussions of power analysis don't include this model
- Some sources suggest using the tables designed for comparing correlations across populations (Fisher's Z-test)
- Other sources suggest using twice the sample size one would use if looking for r = the expected r-difference (works out to about the same thing as above suggestion)
- Each of these depends upon having a good estimate of both correlations, so that the estimate of the correlation difference is reasonably accurate
- It can be informative to consider the necessary sample sizes for differences in the estimates of each correlation

Here's an example …

Suppose you want to compare the correlations of GREQ and GREA with graduate school performance.

Based on a review of the literature, you expect that…

- GREQ and grad performance will correlate about .4
- GREA and grad performance will correlate about .6
- so you would use the value of r-r = .20 …
- and get the estimated necessary sample size of N = 395

To consider how important are the estimates of r…

- if the correlations were .35 and .65, then with r-r = .30, N= 177
- if the correlations were .45 and .55, the with r-r=.10, N= 1573

Ω

Power Analysis for Multiple regression

Power analysis for multiple regression is about the same as for simple regression, we decide on values for some parameters and then we consult a table …

Remember the F-test of H0: $R^2 = 0$??

Which corresponds to:

significance test = effect size * sample size

So, our power analysis will be based not on R² *per se*, but on the power of the F-test of the H0: $R^2 = 0$

```
AnotherN = 48, and 6 predictors, R^2 = .20 (p < .05)
a = .05    u =  6     v =
f² =  =.2 / (1 - .2) = .25 .25 * (6 + 41 + 1) = 12
Go to table -- a = .05 & u = 6  \lambda = 12v = 20 59
power is about 60
.6460 68
```
This sort of *post hoc* power analysis is, as before, especially helpful when the H0: has been retained -- to determine whether the result is likely to have been a Type II error.

Remember that one has to decide how small of an effect is "meaningful", and adjust the sample size to that decision.

Using the power tables (*post hoc)* for multiple regression (single model) requires that we have four values: $a =$ the p-value we want to use (usually .05) $u = df$ associated with the model (we've used "k") $v = df$ associated with F-test error term $(N - u - 1)$ f^2 = (effect size estimate) = R² / (1 - R²) λ = f² $*$ (u + v + 1) This is the basis for determining power E.g., $N = 96$, and 5 predictors, $R^2 = 0.10$ was found $a = 0.05$ u = 5 v = 96 - 5 - 1 = 90 $f^2 = .1 / (1 - .1) = .1111$ $\lambda = .1111 \times (5 + 89 + 1) = 10.6$ Go to table -- $a = .05$, $\& u = 5$ $\& u = 10$ 12 $v = 60, 63, 72$ power is around .68 120 65 75

a priori power analyses for multiple regression are complicated by ...

- Use of λ (combo of effect & sample size) rather than R² (just the effect size) in the table.
- This means that sample size enters into the process TWICE
	- when computing $\lambda = f^2$ * (u + v + 1)
	- when picking the "v" row to use v = N u 1

• So, so the λ of an analysis reflects the combination of the effect size and sample size, which then has differential power depending (again) upon sample size (v).

E.g.#1, R² = .20 f^2 = .2 / (1-.2) = .25 N = 50 λ = .25 \star (50) = 12.5 with $u = 10$, and $v = N - 10 - 1 = 39 -1$ power is about .50

E.g.#2, R² = .40 f² = .4 / (1 - .4) = .67 N = 19 λ = .67 $*$ (19) = 12.5 with $u = 10$, and $v = 19 - 19 - 1 = 8 - 1$ power is about .22

So, for *a priori* analyses, we need the sample size estimate to compute the λ to use to look up the sample size estimate we need for a given level of statistical power ????

Power Analysis for comparing **nested** multiple regression models $(R^2\Delta)$...

The good news is that this process is almost the same as was the power analysis for R^2 . Now we need the power of ...

 R_{\perp}^2 - $R_{\rm S}^2$ / $k_{\rm L}$ - $k_{\rm s}$ R²_L - $R_{\rm S}^2$ N - $k_{\rm I}$ - 1 F = -------------------------- = --------------- * ------------1 - R²L / N - k_l - 1 1 - R²L k_L - k_s

Which, once again, corresponds to:

significance test = effect size * sample size

the notation we'll use is \ldots R²_{Y-A B} - R²_{Y-A}

-- testing the contribution of the "B" set of variables

Perhaps the easiest way to do *a priori* sample size estimation is to play the "what if game" . . .

I expect that my 4-predictor model will account for about 12% of the variance in the criterion -- what sample size should I use ???

$$
a = .05
$$
 u = 4 $f^2 = R^2 / (1 - R^2) = .12 / (1 - .12) = .136$

Using the table…

so $v = 90$, $\lambda = 12.2$, power = about .77 (I'd go with N = 100-11^o).

Power Analysis for Multiple Semi-partial Correlations

Any semi-partial or multiple semi-partial uses the same idea …

 $r_{Y(A.B,C,D)} = \sqrt{R^2_{Y.ABCD}} - R^2_{Y.BCD}$ or ...

… the correlation between Y & A, controlling A for B, C & D, is the square root of the unique contribution of A to the ABCD model

So,we perform power analyses for semi-partial correlations using the same process we use for a nested model comparison.

Now we need the power of …

$$
F = \frac{R^{2}Y_{ABCD} - R^{2}Y_{BCD}}{1 - R^{2}Y_{ABCD}}
$$
 / N - K_L - 1

This has the same problem as a estimating power for a semi- partial, with the same solution – use correlation power table as an estimate of a proper sample size.

Power Analysis for Partial Correlations

A partial correlation can be obtained from the difference between two multiple regression models (re-scaled a bit) …

$$
r Y_{(A:B)} = \frac{\sqrt{R^{2} Y_{AB} - R^{2} Y_{IB}}}{1 - R^{2} Y_{IB}}
$$

So, we perform power analyses for partial correlations using the same process we use for a nested model comparison.

Now we need the power of …

$$
F = \frac{R^{2}Y_{A,B} - R^{2}Y_{B}}{1 - R^{2}Y_{A,B} / N - k_{L} - 1}
$$
 note: $k_{L} - k_{S} = 1$

This has the same problem as a estimating power for a semi- partial, with the same solution – use correlation power table as an estimate of the proper sample size

Testing non-nested multiple regression models…

It is essentially the same process as you used earlier for comparing "correlated correlations"…

What we will do is…

- estimate each of the correlation values
	- R for the one model
	- R for the other model
- find R-R and apply the Fisher's Z-test power table

Comparing multiple regression models across groups

Remember, there are two portions of this comparison – we need to do the power for each

- 1. Comparing how well the predictors "work" for the two groups -- estimate $\mathsf{R}_{\mathsf{g}1}$ - $\mathsf{R}_{\mathsf{g}2}$ and apply the Fisher's Z-test power table
- 2. Comparing the "structure" of the model from the 2 groups
- -- estimate $\mathsf{R}_{\mathsf{direct}}\,{-}\,\mathsf{R}_{\mathsf{cross}}$ and apply the Fisher's power table (this is an approximation, as was using this table for

correlated correlations earlier)

Comparing multiple regression models across criteria

Comparing the "structure" of the model from the 2 criteria

-- estimate $\mathsf{R}_{\mathsf{direct}}\, \mathsf{R}_{\mathsf{cross}}$ and apply the Fisher's power table

(this is an approximation, as was using this table for correlated correlations earlier)

Notice how blythly we say we will estimate all of these R-values in these last two types of power analyses. Often we can't estimate them well, and should play the "what-if" game to consider what power we will have for different possibilities!!!

ŵ

Considering the sample size for the **Study**

Really a simple process, but sometimes the answer is daunting!

First: For each analysis (r or R²)

- \rightarrow perform the power analysis
- \rightarrow consider the "200-300" suggestion & resulting stability
- \rightarrow pick the larger value as the N estimate for that analysis
- Then: Looking at the set of N estimates for all the analyses …
	- \rightarrow The largest estimate is the best bet for the study

This means we will base our **study** sample size on the sample size required for the least powerful significance test !

Usually this is the smallest simple correlation or a small R² with a large number of predictors.