
Power Analysis

• Subject-to-variable ratio
• Selecting sample size for significance
• Power & Stability Considerations
• Useful types of power analyses

– simple correlations
– correlation differences between populations (groups, etc.)
– differences between correlated correlations
– multiple correlation models
– differences between nested multiple correlation models
– semi-partial and partial correlations
– differences between non-nested multiple correlation models
– differences between multiple regression models for different groups 
– Differences between multiple regression models for different criteria

• Determining Sample Size for “the study”

Sample Size & Multiple Regression
The general admonition that “larger samples are better” has 

considerable merit, but limited utility…

• R² will always be 1.00 if k = N-1  (it’s a math thing)

• R² will usually be “too large” if the sample size is “too small” 
(same principle but operating on a lesser scale)

• R² will always be larger on the modeling sample than on any 
replication using the same regression weights

• R² & b-values will replicate better or poorer, depending upon 
the stability of the correlation matrix values

• R² & b-values of all predictors may vary with poor stability of 
any portion of the correlation matrix (any subset of
predictors)

• F- & t-test p-values will vary with the stability & power of the 
sample size – both modeling and replication samples

Subject-to-Variable Ratio
How many participants should we have for a given number of 
predictors? -- usually refers to the full model

The subject/variable ratio has been an attempt to ensure that the 
sample is “large enough” to minimize “parameter inflation” and 
improve “replicability”.

Here are some common admonitions..
• 20 participants per predictor
• a minimum of 100 participants, plus 10 per predictor
• 10 participants per predictor
• 200 participants for up to k=10 predictors and 300 if k>10
• 1000 participants per predictor
• a minimum of 2000 participants, + 1000 for each 5 predictors



As is often the case, different rules of thumb have grown out of 
different research traditions, for example…

• chemistry, which works with very reliable measures and stable 
populations, calls for very small s/v ratios 

• biology, also working largely with “real measurements” (length, 
weight, behavioral counts) often calls for small s/v ratios

• economics, fairly stable measures and very large (cheap) 
databases often calls for huge s/v ratios

• education, often under considerable legal and political scrutiny, 
(data vary in quality) often calls for fairly large s/v ratios

• psychology, with self-report measures of limited quality, but 
costly data-collection procedures, often “shaves” the s/v 
ratio a bit

Problems with Subject-to-variable ratio

#1  neither n, N nor N/k is used to compute R² or b-values
• R² & b/-values are computed from the correlation matrix

• N is used to compute the significance test of the R² & each b-weight

#2 Statistical Power Analyses involves more than N & k
We know from even rudimentary treatments of statistical power 
analysis that there are four attributes of a statistical test that are 
inextricably intertwined for the purposes of NHST…
• acceptable Type I error rate (chance of a “false alarm”)
• acceptable Type II error rate (chance of a “miss”)
• size of the effect being tested for
• sample size

We will “forsake” the subjects-to-variables ratio for more formal 
power analyses & also consider the stability of parameter 
estimates (especially when we expect large effect sizes).

“Selecting S for significance”
• estimate the pairwise effect size, say r = .35
• using the correlation critical-value table, select 
a sample size for which that effect size will be 
significant
• r = .35 will be significant if df = 30 or S=32

Partial  critical-r Table

df         = .05
20         .42    
25         .38    
30         .35
35         .33    
40         .30   
45         .29    
50         .27   
60         .25 

What’s the power of 
this sample size ??
For r = .35 & S=30,
Power is only 50%

r →
↓ power

.35

.20 13

.30 18

.40 24

.50 30

.60 45

.70 52

.80 59

.90 78

So, this approach leads to 
very low power !



Why do these two approaches differ so much ?

The difference in “suggested S” is because the power analysis 
takes into account that the r-value of a sample drawn from a 
population with r = .361 might, by chance, be smaller than .361 !!!

Remember that we are testing RH: and making inferences about 
the population correlation !!!!

So, we want to be able to correctly decide that there is a 
correlation in the population (i.e., reject H0:), even if the sample 
we happen to draw has a smaller r-value than the population.

By the way… 
For a given r  the sample size for 80% power is about 2X the 
sample size for which that r will be significant (p = .05)

NHST Power “vs.” Parameter estimate stability

Stability how much error is there in the sample-based estimate
of a parameter (correlation, regression weight, etc.) ?

Stability is based on …
• “quality” of the sample (sampling process & attrition)
• sample size
Std of r    =   1  /   (N-3), so …

N=50   r +/- .146        N=100  r +/- .101       N=200   r +/- .07 
N=300 r +/- .058        N=500  r +/- .045       N=1000 r +/- .031

NHST power what’s the chances of rejecting a “false null” 
vs. making a Type II error?

Statistical power is based on…
• size of the effect involved (“larger effects are easier to find”)
• amount of power (probability of rejecting H0: if effect size is as

expected or larger) 

Partial Power Table (taken & extrapolated from Friedman, 1982)
r      .15   .20  .25  .30  .35  .40   .45    .50    .55    .60    .65    .70

power
.30     93    53   34   24   18   14    11       9       8        7      6      5
.40    132   74   47   33   24   19    15     12     10        8      7      6
.50    170   95   60   42   30   23    18     14     12        9      8      7
.60    257  143  90   62   45   34    24     20     16      13    11      9
.70    300  167 105  72   52   39    29     23     18      15    12    10
.80    343  191 120  82   59   44    33     26     20      16    13    11
.90    459  255 160 109  78   58    44     34     27      21    17    13

“Sufficient 
power” 
but “poor 
stability”

How can a sample have “sufficient power” but “poor stability”?
Notice it happens for large effect sizes!!  
e.g., For a population with r = .30  & a sample of  100 …
• Poor stability of r estimate    +/- 1 std is .20-.40
• Large enough to reject H0: that r = 0  power almost .90

The power table only tells us the sample size we need to reject 
H0: r=0!!  It does not tell us the sample size we need to have a 
good estimate of the population r !!!!!



We know from even rudimentary treatments of statistical power 
analysis that there are four attributes of a statistical test that drive 
the issue of selecting the sample size needed a particular 
analysis…
• acceptable Type I error rate (chance of a “false alarm”)
• acceptable Type II error rate (chance of a “miss”)
• size of the effect being tested for (.1=small, .3=med, .5=large)
• sample size for that analysis

We also know that power is not the only basis for determining “N”

The stability/variability of each r in the correlation matrix is related 
to N

Std of r    =   1  /   (N-3), so …
N=50   r +/- .146        N=100  r +/- .101       N=200   r +/- .07 
N=300 r +/- .058        N=500  r +/- .045       N=1000 r +/- .031

Power Analysis for Simple Correlation
Post hoc

I found r (22) = .30, p > .05,  what’s the chance I made a
Type II error ??

N =              Power =                Chance Type II error

A priori

#1 I expect my correlation will be about .25, & want power = .90

sample size should be  =   

#2  Expect correlations of .30, .45, and .20 from my three
predictors & want power = .80

sample size should be  = 

24 .30 .70

160

191, based on lowest r = .20

Power Analysis for Simple Correlation

On the following page is a copy of the power analysis table 
from the first portion of the course.   Some practice...

Post hoc

I found r (22) = .30, p < .05,  what’s the chance I made a
Type II error ??

N =              Power =                Chance Type II error

A priori

#1 I expect my correlation will be about .25, & want power = .90

sample size should be  =   

#2  Expect correlations of .30, .45, and .20 from my three
predictors & want power = .80

sample size should be  = 

24 .30 .70

160

191, based on lowest r = .20



Putting Stability & Power together to determine the sample size 

1. Start with stability – remember  …
Std of r    =   1  /   (N-3), so …

N=50   r +/- .146        N=100  r +/- .101       N=200   r +/- .07 
N=300 r +/- .058        N=500  r +/- .045       N=1000 r +/- .031

… suggesting that 200-300 is a good guess for most analyses 
(but more is better).

2. Then for the specific analysis, do the power analysis …

For the expected r/R²  & desired power, what is the required  
sample size?

3. Use the larger of the stability & power estimates !

An example …. 

We expect a correlation of .60, and want only a 10% risk of a 
Type II error if that is the population correlation

Looking at the power table for   r = .60 and power = .90..
… the suggested sample size is 21

N = 21, means the std of the correlation estimates (if we took
multiple samples from the target population is 

1 /  (21-3)  = .35
With N = 21  we’ve a 90% chance of getting a correlation 

large enough to reject the Null 

 on average, our estimate of the population
correlation will be wrong my .35.  We’d      
certainly interpret a .25 and a .95 differently  

In this case we’d go with the 200-300 estimate, in order to 
have sufficient stability – we’ll have lots of power! 

Another example …. 

We expect a correlation of .10, and want only a 20% risk of a 
Type II error if that is the population correlation

Considering stability – let’s say we decide to go with 300

Looking at the power table for   r = .10 and power = .80..
… the suggested sample size is 781

With N = 300, we’d only have power of about .40 

… 60% chance of a Type II error.

In this case we’d go with the 781 estimate (if we can afford it), 
in order to have sufficient power – we’ll have great stability  of 
+/- .036 ! 



Power analysis for correlation differences between populations
• the Bad News

• this is a very weak test -- requires roughly 2x the N to test for 
a particular r-r value than to test for a comparable r-value

• the Good News
• the test is commonly used, well-understood and tables have 

been constructed for our enjoyment (from Cohen, 1988)
Important!   Decide if you are comparing r or |r| values

r1 - r2 .10     .20      .30       .40     .50      .60      .70 .80
Power
.25 333 86 40 24 16 12 10 8
.50 771   195 88 51 34 24 19 15
.70 1237   333     140     89 52 37 28 22
.80 1573   395     177     101 66 47 35 28
.90 2602   653     292     165     107 75 56 44

all values for  = .05      Values are “S” which is total sample size

Power Analysis for Comparing “Correlated Correlations”

It takes much more power to test the H0: about correlations 
differences than to test the H0: about each r = .00

• Most discussions of power analysis don’t include this model

• Some sources suggest using the tables designed for comparing 
correlations across populations (Fisher’s Z-test)

• Other sources suggest using twice the sample size one would 
use if looking for r = the expected r-difference (works out to 
about the same thing as above suggestion)

• Each of these depends upon having a good estimate of both 
correlations, so that the estimate of the correlation 
difference is reasonably accurate

• It can be informative to consider the necessary sample sizes for 
differences in the estimates of each correlation

Here’s an example …

Suppose you want to compare the correlations of GREQ and 
GREA with graduate school performance.
Based on a review of the literature, you expect that…
• GREQ and grad performance will correlate about .4
• GREA and grad performance will correlate about .6
• so you would use the value of  r-r = .20 …
• and get the estimated necessary sample size of N = 395

To consider how important are the estimates of r…
• if the correlations were .35 and .65, then with r-r = .30, N= 177
• if the correlations were .45 and .55, the with r-r=.10, N= 1573



Power Analysis for Multiple regression 

Power analysis for multiple regression is about the same as for 
simple regression, we decide on values for some parameters and 
then we consult a table …

Remember the F-test of H0: R² = 0 ??

R² / k R² N-k-1 

F = -------------------- =       ---------- *  ---------

1-R²  /  N - k - 1                                 1 - R²           k

Which corresponds to:     

significance test =  effect size   *   sample size

So, our power analysis will be based not on R² per se, but on the 
power of the F-test of the H0:  R² = 0

Using the power tables (post hoc) for multiple regression (single  
model) requires that we have four values:

a =  the p-value we want to use (usually .05)

u =  df associated with the model ( we’ve used “k”)

v =  df associated with F-test error term (N - u - 1)

f² = (effect size estimate) =  R² / (1 - R²)

 = f² * ( u + v + 1)     This is the basis for determining power

E.g., N = 96, and 5 predictors, R² = .10 was found 

a = .05     u = 5     v = 96 - 5 - 1 = 90

f² = .1 / (1 - .1) = .1111       = .1111 * (5 + 89 + 1) = 10.6

Go to table -- a = .05, & u = 5  = 10     12

v =   60 63     72

power is around .68 120 65     75

Another N = 48, and 6 predictors, R² = .20 (p < .05) 

a =           u =          v =

f² =  =

Go to table -- a = .05 & u = 6  = 12 

v =   20

power is about 60

This sort of post hoc power analysis is, as before, especially 
helpful when the H0: has been retained -- to determine whether 
the result is likely to have been a Type II error.

Remember that one has to decide how small of an effect is 
“meaningful”, and adjust the sample size to that decision.

.05 6

.2 / (1 - .2) = .25 .25 * (6 + 41 + 1) = 12

59

68.64



a priori power analyses for multiple regression are complicated 
by ...
• Use of  (combo of effect & sample size) rather than R² (just the 

effect size) in the table.
• This means that sample size enters into the process TWICE 

• when computing  = f² * ( u + v + 1) 
• when picking the “v” row to use  v = N - u - 1

• So,  so the  of an analysis reflects the combination of the effect 
size and sample size, which then has differential power depending 
(again) upon sample size (v). 

E.g.#1,  R² = .20    f² = .2 / (1-.2) = .25    N = 50      = .25 * ( 50) = 12.5
with u = 10, and v = N - 10 - 1  = 39  -- power is about .50

E.g.#2,  R² = .40  f² = .4 / (1 - .4) = .67 N = 19  = .67 * (19)   = 12.5
with u = 10, and v = 19 - 19 - 1  = 8  -- power is about .22

So, for a priori analyses, we need the sample size estimate to 
compute the  to use to look up the sample size estimate we need for a 
given level of statistical power  ????

Perhaps the easiest way to do a priori sample size estimation is to 
play the “what if game” . . .

I expect that my 4-predictor model will account for about 12% of 
the variance in the criterion -- what sample size should I use ???

a = .05   u =  4   f² = R² / (1 - R²) = .12 / (1 - .12) = .136

“what if..” N = 25               N = 65 N = 125
v = (N - u - 1) = 20                      60                        120

 = f² * ( u + v + 1) = 3.4                    8.8     17.0

Using the table…

power = about .21         about .62 about  .915

If we were looking for power of .80, we might then try N = 95

so v = 90,   = 12.2, power = about .77 (I’d go with N = 100-110)

Power Analysis for comparing nested multiple  
regression models (R²)…

The good news is that this process is almost the same as was 
the power analysis for R².  Now we need the power of …

R²L - R²S /  kL - ks                       R²L - R²S N - kl - 1 

F  =  -------------------------- =      --------------- *  ------------

1 - R²L /   N - kl - 1                1 - R²L kL - ks 

Which, once again, corresponds to:     

significance test =  effect size   *   sample size

the notation we’ll use is …  R2
Y-A,B  - R2

Y-A    

-- testing the contribution of the “B” set of variables



Using the power tables (post hoc) for R² (comparing nested 
models) requires that we have four values:

a =  the p-value we want to use (usually .05)
w = # predictors different between the two models)

u =  # predictors associated with the smaller model 

v =  df associated with F-test error term (N - u - w - 1)

f² = (effect size estimate)  =  (R²L - R²S)  /  (1 - R²L)

 = f² * ( u + v + 1)  , where

Post Hoc E.g., N = 65, R²L (k=5) = .35, R²S (k=3) = .15

a = .05   w = 2  u = 3     v = 65 - 2 - 3 - 1 = 59

f² = .35 - .15 / 1 - .35 = .3077       = .3077 * (3 + 59 + 1) = 19.4

Go to table -- a = .05 & u = 3  = 20

power about .97 v =   60 .97   

a priori power analyses for nested model comparisons are probably most easily 
done using the “what if “ approach

I expect that my 4-predictor model will account for about 12% of the variance in 
the criterion and that including an additional 3 variables will increase the R² to 
about .18  -- what sample size should I use ???

a = .05   w = 3  u =  4   f² = (RL² - RS²) / (1 - R²)  = (.18 - .12) / (1 - .18)  =  .073

“what if..” N = 28          N = 68 N = 128 N = 208 ()

v = (N - u - w - 1) =              20                60               120 200 ()

 = f² * ( u + v + 1) = 1.83              4.75     9.13               15.0

Using the table…

power = < .15       about .37        about .64           about .89

If we were looking for power of .80, we might then try N = 158

so v = 150,   = 11.3 power = about .77 (I’d go with N = 180 or so)

Power Analysis for Semi-partial Correlations
A semi-partial correlation can be obtained from the difference 
between two multiple regression models…

rY(,A.B) = √ R²Y.AB - R²Y.B or …
… the correlation between Y & A, controlling A for B, is the square root of the 
unique contribution of A to the A-B model

So,we could perform power analyses for semi-partial correlations 
using the same process we use for  a nested model comparison.  
Now we need the power of …

R²Y.AB - R²Y.BF  =  ------------------------------
1 - R²Y.AB /   N - kL – 1                          note: kL – kS = 1

While simple to calculate, the difficulty with this approach is that we need to 
know not only the expected value of the semi-partial, but also of the related 
multiple R2 – something that we rarely have!

For this reason, the common (and workable) way to estimate 
sample size for a semi-partial correlation is to use the power table 
for a simple correlation



Power Analysis for Multiple Semi-partial Correlations

Any semi-partial or multiple semi-partial uses the same idea …
rY(,A.B,C,D) = √ R²Y.ABCD - R²Y.BCD or …
… the correlation between Y & A, controlling A for B, C & D, is the 
square root of the unique contribution of A to the ABCD model

So,we perform power analyses for semi-partial correlations using 
the same process we use for  a nested model comparison.  

Now we need the power of …

R²Y.ABCD - R²Y.BCD
F  =  --------------------------------------

1 - R²Y.ABCD /   N - kL – 1

This has the same problem as a estimating power for a semi-
partial, with the same solution – use correlation power table as an 
estimate of a proper sample size.

Power Analysis for Partial Correlations
A partial correlation can be obtained from the difference between 
two multiple regression models (re-scaled a bit) …

√ R²Y.AB - R²Y.Br Y(,A.B) = ------------------------
1 - R²Y.B

So, we perform power analyses for partial correlations using the 
same process we use for  a nested model comparison.  

Now we need the power of …

R²Y.AB - R²Y.B
F  =  ------------------------------

1 - R²Y.AB /   N - kL – 1                          note: kL – kS = 1

This has the same problem as a estimating power for a semi-
partial, with the same solution – use correlation power table as 
an estimate of the proper sample size

Testing non-nested multiple regression models…

It is essentially the same process as you used earlier for 
comparing “correlated correlations”…

What we will do is…

• estimate each of the correlation values 

• R for the one model

• R for the other model

• find R-R and apply the Fisher’s Z-test power table



Comparing multiple regression models across groups
Remember, there are two portions of this comparison – we need 
to do the power for each

1.  Comparing how well the predictors “work” for the two groups

-- estimate Rg1-Rg2 and apply the Fisher’s Z-test power table

2. Comparing the “structure” of the model from the 2 groups

-- estimate Rdirect – Rcross and apply the Fisher’s power table

(this is an approximation, as was using this table for
correlated correlations earlier)

Comparing multiple regression models across criteria

Comparing the “structure” of the model from the 2 criteria

-- estimate Rdirect – Rcross and apply the Fisher’s power table

(this is an approximation, as was using this table for
correlated correlations earlier)

Notice how blythly we say we will estimate all of these R-values 
in these last two types of power analyses.  Often we can’t 
estimate them well, and should play the “what-if” game to 
consider what power we will have for different possibilities!!!

Considering the sample size for the Study

Really a simple process, but sometimes the answer is daunting!

First:   For each analysis (r or R²)
 perform the power analysis
 consider the “200-300” suggestion & resulting stability
 pick the larger value as the N estimate for that analysis

Then:  Looking at the set of N estimates for all the analyses …
 The largest estimate is the best bet for the study

This means we will base our study sample size on the sample 
size required for the least powerful significance test !

Usually this is the smallest simple correlation or a small R² with 
a large number of predictors.


