
Research Hypotheses and 
Multiple Regression

• Kinds of multiple regression questions

• Ways of forming reduced models

• Comparing “nested” models

• Comparing “non-nested” models

When carefully considered, almost any research hypothesis or 
question involving multiple predictors has one of four forms:

1. The impact of adding or deleting one or more particular 
predictors from to a specified model

• Whether or not adding that subset will “help” the model, (i.e., 
increase the R² significantly)

•This involves comparing “nested models” using the R2
Δ

2. The impact of substituting one or more predictors for one or 
more others

• Whether the one model “works better” than the other (I.e., has 
a larger R²)

• This involves comparing “non-nested models” (t- or Z-test)

Research Hypotheses and Multiple Regression, cont.

3. The differential performance of a specific model across two or 
more groups (populations, treatments, etc.)

• Whether the model produces equivalent R2 for the groups

• Allows us to look for much more than “mean differences”

• Important for population generalizability questions

• This involves comparing “nested models” (Fisher’s Z-test)

4.The differential performance of a specific model for predicting
two or more different  criterion variables

• Whether the model produces equivalent R2 for the criterion 
variables

• Important when get “conflicting” results across measures

• This involves comparing “correlated R2” (t- or Z-test)



About comparing Full vs. Reduced (nested) models …

Full model -- model involving “all the variables” 

Reduced model -- model involving “some subset” of the variables

Ways of forming reduced models:

Theory -- some variables are “more important” from a theoretical 
perspective, and the question is if a subset of 
variables accounts for the criterion variable as well as 
the full model (e.g., will adding MMPI scores improve a 
model of drinking behavior that is based on only  
demographic variables?)

Pragmatic -- will  a subset of the “less costly” predictors do as well 
as a model that included them and the more expensive 
ones (e.g., will adding a full scale IQ measure (would cost 
us $250)  to a model using GRE scores ($0 for us) 
improve our selection of graduate students?)

Summary of ways of constructing reduced models:

• only include variables with significant simple correlations

• nah -- ignores suppressor variables & is atheoretical

• only include variables with significant contributions to full model

• nah -- ignores collinearity patterns & is atheoretical

• use automated/statistical model construction techniques

• nah -- doesn’t work as intended & is atheoretical

• select a subset of variables based on theory or 
availability/economics that might be “sufficient” (perform 
equivalently to the full model)

• yeah !!!

Keep in mind that the hypothesis/question might involve 
comparing two reduced models - one nested in the other.

Comparing “nested models”

R2
y.x1,x2,x3,x4     vs.      R2

y.x1,x2

H0: R2
y.x1,x2,x3,x4    = R2

y.x1,x2

(RL² - RS²) / (kL - kS) RL
2 = R2 of the larger model     

F = --------------------------------- RS
2 = R2 of the smaller model 

(1 - RL²) / (N - kL - 1)              kL = # preds of larger model 
kS = # preds of smaller model 
N   = total number of subjects

Find F-critical using df  =  (kL - kS ) &  (N-kL-1)

If retain H0:   RL² = RS²   Larger model “does no better”

If reject H0:   RL² > RS²   Larger model “does better” than smaller



1st Important thing about comparing models using R2 
Δ
...

A model with better R2 predicts y’ better “on average” 
(averaging across participants)

The R2 
Δ

is computed using the whole sample

• Different people have different “best predictors”

• Adding one or more predictors that increase R2 for most 

participants (or “on average”) can actually decrease 

predictive accuracy for some individuals

• This can happen for whole subgroups (strata) 

• a model can “get better on average” and “get worse for a 
subgroup” at the same time

• major issue for both correlation and prediction research!!!!!

Good ideal to look at distribution of residuals from any model –
looking for subgroup differences!!!

Notice the numerator of the F-test

• The change in R² is divided by the number of predictors changed

• This makes sense, because an R² change of .20 from adding or 
dropping a single predictor is “more impressive” than the 
same change of .20 from adding or dropping 4 predictors

• This test actually asks if  the “average contribution to the R²” of 
the particular variables that are added to or dropped from 
the model is significantly different from 0.00.  

• So, a significant R2
Δ

does not mean all the added predictors
contribute to the model!!!

• The impact of adding or dropping predictors from a model may 
depend upon “packaging”, how many are involved, etc.  

2nd Important thing about comparing models using R2
Δ
…

The additional predictors contribute to the model “on average”
(averaging across predictors)

Good ideal to look at what predictors do and don’t contribute to 
any model you are comparing!!!

Let’s start with a model having 4 predictors -- R² = .30  
&  a RH about adding 4 of other predictors (x1, x2, x3, x4)

• (for this example) given the sample size, etc, let’s say the R²-
change will be significant if the average contribution of the 
added predictors is 5% (.05)

• Let’s also say that two of the four predictors (x1, x2) have 
contributions of 8% each and two (x3 and x4) have 
contributions of 4% each 

• If we add the four predictors simultaneously, the average R² 
change of 6% will be significant -- adding the four 
predictors will be interpreted as “helping” the model



• IF we add just x1 and x2, the average increase of 8% will be 
significant -- adding just these two “helps” -- the same 
story we got about these two when we added them
along with the others

•IF we add just x3 and x4, the average increase of 4% will not be
significant -- adding these two “doesn’t help” -- not the 
story we got when we added them along with the other two

Consider what the various results would be if an average R²-
change of 5% or 3% were necessary for a significant change 

Applying this knowledge of R²-change will allow us to consider 
changes in multiple predictor models, for example…

We know …

• dropping a contributing predictor from a model will lower R² 
significantly

• dropping a non-contributing predictor from a model will lower R² 
numerically, but not significantly

• adding a contributing predictor to a model will raise R²
significantly

• adding a non-contributing predictor to a model will raise R²
numerically, but not significantly

Usually (in most texts) we are told that we can’t accurately 
anticipate the results of adding or dropping more than one 
variable at a time  -- but this is not strictly correct !!!

Consider what would happen if we dropped 2 non-contributing 
predictors from a multiple regression model

• we are told that when we’ve dropped one of the predictors, that 
the other might now contribute (we’ve changed the 
collinearity mix)

• but consider this…

• neither of the predictors, if dropped by itself will produce a 
significant R² change

• so the average R² change from dropping the two shouldn’t 
be significant either

• thus, we can drop both and expect that the R² change won’t 
be significant)

• this logic is useful, but becomes increasingly precarious as 
sample size drops, collinearity increases or the number of 
predictors in the model or being dropped increases



Similarly…

Dropping two predictors that both contribute should produce an 
average R² change that is significant (same logic in reverse)

However, things get “squirrelly” when considering dropping one 
contributing and one non-contributing predictor 

• we have no good way of considering whether the average R²
change will or will not be significant

We will consider these issues, their applications and some 
“variations” when we look at the workings of statistical/automated 
modeling procedures.

The moral of the story…

• Because this R²-change tests really tests the average R²-change 
of the set of added or dropped predictors, the apparent 
contribution of a added variable may depend upon the 
variables along with which it is added or dropped 

• Adding or dropping large sets of variables simultaneously can 
make the results harder to interpret properly

Because of this...

• Good RHs usually call for arranging the addition or deletions of 
items in small, carefully considered sets

• Thus, most Rhyps of this type use the addition or removal  of 
multiple sets (each with a separate R²-change test)

• This is called hierarchical modeling -- the systematic addition or 
removal of hypothesized sets of variables

But wait, there’s more…

When we plan to add multiple sets of predictors, we have to 
carefully consider the ORDER in which we add the sets!  

WHY???

Remember when we considered the meaning of a predictors 
regression weight in a multiple regression model … we were 
careful to point out that the test of that regression weight (or the 
R²-change when dropping that predictor from the model) only 
tests the contribution of that predictor to that particular model.

Same thing when adding (or dropping) a set of predictors from a 
model -- the test of the R²-change only tests the contribution of 
that set of predictors to that particular model.

In other words ... whether or not a set of predictors contributes to 
“a model” may depend upon the particular model from which they 
are added (or dropped) -- or the order in which the groups are 
added (or dropped)



In general, this type of hierarchical modeling starts with the 
“smallest model”, and then proceeds by adding selected variables 
of sets of variables, until the “full model” is reached.

So, how does one select the order of adding variables or groups 
of variables from the model ?? 

There’s a general rule --The more important the variable is to your 
hypothesis, the more conservatively (later in the sequence) you 
should test it”

In hierarchical modeling, this means that the most interesting 
variables are entered “later”, so that they must have a unique 
contribution to the most complete model.

Said differently, the most conservative test of a variable is whether 
or not it contributes to a larger (rather than a smaller) model.

Examples of applying this to testing theoretical RHs

Many hierarchical modeling efforts have three basic steps…

1.  Enter the demographic variables 

2.  Enter the “known predictors” (based on earlier work)

3.  Enter the “new variables” (the ones you are proposing make up 
an important, but as yet unidentified, part of understanding 
this criterion variable)

This provides a conservative test of the “new variables”, because 
they must “compete” with all the other variables and each other in 
order to become a contributing predictor in the model.

To show that your “new variables” are correlated with the criterion, 
but don’t contribute beyond what’s accounted for by the “demo + 
old” model, often isn’t sufficient (your variables don’t add anything)

An important variation of hierarchical modeling, that is applied in 
psychometric and selection situations, is the demonstration of 
incremental validity.  A predictor or instrument has incremental 
validity, when it increases the predictive accuracy (R²) of an 
existing model.

A common situation is when someone (theoretician or 
salesperson) wants to “add a new instrument” to the set of 
predictors already being used.  What is convincing evidence??

• A “significant” correlation between the “new” predictor and the 
criterion isn’t sufficient

• Even if the “new” predictor has a stronger correlation with the 
criterion than any of the predictors already in use

• To be impressive, the new predictor must “add to” the predictor 
set already in use -- that’s incremental validity

• the “new” is added into the model last, and the R²-change tested 
-- providing a conservative test of its utility



Comparing “non-nested models”

Another important type of hypothesis tested using multiple 
regression is about the substitution of one or more predictors for 
one or more others.

Common bases for substitution hypotheses :

• Often two collinear variables won’t both contribute to a model --
you might check of there is an advantage of one vs. the 
other being included in the model

• You might have a hypothesis that a variable commonly used in a 
model (theory) can be substituted for with some other 
variable

• You might be interested in substituting one (or more) 
inexpensive (or otherwise more available) predictors for 
one that is currently used

Non-nested models are compared using either Hotelling’s t or 
Rosenthall’s Z (which may be slightly more robust) -- the same 
tests used to compare “correlated correlations”

• highlights that R is really r (or that ry,x = ry,y’)

These formulas includes not only the R² of each model, but also 
the collinearity of the two models (rx1,x2)

Some basic principles of these tests . . .

• the more correlated the models are to each other, the less likely 
they are to be differentially correlated with the criterion

• obviously the more predictors two models share, the more 
collinear they will be -- seldom does the substitution of a 
single predictor within a larger model have a significant 
effect

• the more collinear the variables being substituted, the more 
collinear they will be -- for this reason there can be strong 
collinearity between two models that share no predictors

• the weaker the two models (lower R²), the less likely they are to 
be differentially correlated with the criterion

•these are not very powerful tests !!!

• compared to avoiding a Type II error when looking for a given 
r , you need nearly twice the sample size to avoid a Type II 
error when looking for an r-r of the same magnitude

• these tests are also less powerful than tests comparing 
nested models

So, be sure to consider sample size, power and the magnitude of 
the r-difference between the non-nested models you compare !



Important thing to consider about comparing non-nested models…

Non-nested models can have different numbers of predictors!!

If so, some argue, the larger model “has an advantage”

• one mathematical solution is to compare the two models using 
the R2/k from each model, rather than R2s

• those who like this approach say it makes the R2s “more 
comparable”, so that a larger model doesn’t have an 
advantage

• those who like this approach say this helps prevent “hiding” a 
noncontributing predictor in a well-performing model

• same folks often suggest only comparing models for which 
all predictors contribute – which has its own problems…

• those who don’t like this approach say it is now comparing not 
“the models” but the “average contribution of the 
predictors” – not the same thing!


