Research Hypotheses and Multiple Regression: 2

- Comparing model performance across populations
- Comparing model performance across criteria

Comparing model performance across groups

- This involves the same basic idea as comparing a bivariate correlation across groups
 - only now we're working with multiple predictors in a multivariate model

This sort of analysis has multiple important uses ...

- theoretical different behavioral models for different groups?
- psychometric important part of evaluating if "measures" are equivalent for different groups (such as gender, race, across cultures or within cultures over time) is unraveling the multivariate relationships among measures & behaviors
- applied prediction models must not be "biased"

Comparing model performance across groups

There are three different questions involved in this comparison ...
Does the predictor set "work better" for one group than another?

Asked by comparing R² of predictor set from the 2 groups ?
we will build a separate model for each group (allowing different regression weights for each group)
then use Fisher's Z-test to compare the resulting R²s

Are the models "substitutable"?

use a cross-validation technique to compare the models
use Steiger's t-test to compare R² of "direct" & "crossed" models

Are the regression weights of the 2 groups "different" ?

use Z-tests to compare the weights predictor-by-predictor

• or using interaction terms to test for group differences

Things to remember when doing these tests!!!

- the more collinear the variables being substituted, the more collinear they will be -- for this reason there can be strong collinearity between two models that share no predictors
- the weaker the two models (lower R²), the less likely they are to be differentially correlated with the criterion
- nonnill-H0: tests are possible -- and might be more informative !!
- these are not very powerful tests !!!
 - compared to avoiding a Type II error when looking for a given r, you need nearly twice the sample size to avoid a Type II error when looking for an r-r of the same magnitude
 - these tests are also less powerful than tests comparing nested models

So, be sure to consider sample size, power and the magnitude of the r-difference between the non-nested models you compare !

Comparing multiple regression models across groups $\rightarrow 3$?s

Group #1 (larger n)	Group #2 (smaller n)	
+	+	
"direct model" R ² _{D1}	"direct model"	R ² _{D2}
$y'_1 = b_1 x + b_1 z + a_1$	$y'_2 = b_2 x + b_2 z + a_2$	

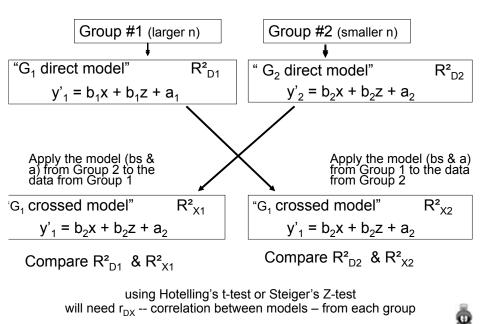
Does the predictor set "work better" for one group than another? Compare $R_{D1}^2 \& R_{D2}^2$ using Fisher's Z-test

- Retain H0: predictor set "works equally" for 2 groups
- Reject H0: predictor set "works better" for higher R2 group

Remember!!

We are comparing the R2 "fit" of the models...

But, be sure to use R in the computator!!!!



Are the multiple regression models "substitutable" across groups?

Are the regression weights of the 2 groups "different" ?

- test of an interaction of predictor and grouping variable
- Z-tests using pooled standard error terms

Asking if a single predictor has a different regression weight for two different groups is equivalent to asking if there is an interaction between that predictor and group membership. (Please note that asking about a regression slope difference and about a correlation difference are two different things – you know how to use Fisher's Test to compare correlations across groups)

This approach uses a single model, applied to the full sample...

Criterion' = b_1 predictor + b_2 group + b_3 predictor*group + a

If b_3 is significant, then there is a difference between then predictor regression weights of the two groups.

However, this approach gets cumbersome when applied to models with multiple predictors. With 3 predictors we would look at the model ...

 $y' = b_1G + b_2P1 + b_3G*P1 + b_4P2 + b_5G*P2 + b_6P3 + b_7G*P3 + a_7G*P3$

Each interaction term is designed to tell us if a particular predictor has a regression slope difference across the groups.

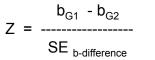
Because the collinearity among the interaction terms and between a predictor's term and other predictor's interaction terms all influence the interaction b weights, there has been dissatisfaction with how well this approach works for multiple predictors.

Also, because his approach does not involve constructing different models for each group, it does not allow...

- the comparison of the "fit" of the two models
- an examination of the "substitutability" of the two models

Another approach is to apply a significance test to each predictor's b weights from the two models – to directly test for a significant difference. (Again, this is different from comparing the same correlation from 2 groups).

The most common formula is ...



However, there are competing formulas for "SE _{b-difference} "

The most common formula (e.g., Cohen, 1983) is...

$$SE_{b-difference} = \sqrt{\frac{(df_{bG1} * SE_{bG1}^2) + (df_{bG2} * SE_{bG2}^2)}{df_{bG1} + df_{bG2}}}$$

However, work by two research groups has demonstrated that, for large sample studies (both N > 30) this Standard Error estimator is negatively biased (produces error estimates that are too small), so that the resulting Z-values are too large, promoting Type I & Type 3 errors.

- Brame, Paternost, Mazerolle & Piquero (1998)
- Clogg, Petrova & Haritou (1995)

Leading to the formulas ...

SE _{b-difference} = $\sqrt{(SE_{bG1}^2 + SE_{bG2}^2)}$

and...

$$Z = \frac{D_{G1} - D_{G2}}{\sqrt{(SE_{bG1}^2 + SE_{bG2}^2)}}$$

Match the question with the most direct test...

Practice is better correlated to performance for novices than for experts.

The structure of a model involving practice, motivation & recent experience is different for novices than experts.

Practice has a larger regression weight in the model for novices than for experts.

Practice contributes to the regression model for *v* novices, but not for experts.

A model involving practice, motivation & recent experience better predicts performance of novices than experts.

Practice is correlated with performance for novices, but not for experts.

Testing r for each group

Comparing r across groups

Testing b for each group

Comparing R² across groups

Comparing R² of direct & crossed models

Comparing b across groups

Comparing model performance across criteria

- same basic idea as comparing correlated correlations, but now the difference between the models is the criterion, not the predictor. There are two important uses of this type of comparison
 - theoretical/applied -- do we need separate models to predict related behaviors?
 - psychometric -- do different measures of the same construct have equivalent models (i.e., measure the same thing) ?
- the process is similar to testing for group differences, but what changes is the criterion that is used, rather than the group that is used
 - we'll apply the Hotelling's t-test and/or Steiger's Z-test to compare the structure of the two models

Are multiple regression models "substitutable" across criteria?

