Factorial Designs: Partitioning Variation to Increase Power \& "Control" Confounds

Starting with simple data set...

Descriptive Statistics

Dependent Variable: DV

Tx	Mean	Std. Deviation	N
1.00	12.7500	2.05287	8
2.00	14.5000	3.16228	8
Total	13.6250	2.72947	16

Tests of Between-Subjects Effects
Dependent Variable: DV

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Tx	12.250	1	12.250	1.724	.210
Error	99.500	14	7.107		
Total	111.750	15			

SStotal $=$ SStx + SSerror \leftarrow Standard ANOVA w/ 2 variance sources

$$
111.750=12.250+99.50
$$

Partitioning existing variance (to add power) ...

Whenever we have additional variables in the data set, we can incorporate them into the analysis. If an additional variable is also a categorical variable, we can use it as a second IV and analyze the data as a factorial design.

F5\% Untitled1 [DataSet0] - SpSs Data Editor - $\square_{\text {- }} \times$				
File Edit View Data Iransform Analyze Graphs Uutilites Add-gns Window Help				
19 : DV				
	Tx	Kind	DV	
1	1.00	1.00	10.00	
2	1.00	1.00	10.00	
3	1.00	1.00	12.00	
4	1.00	1.00	12.00	
5	1.00	2.00	14.00	
6	1.00	2.00	14.00	
7	1.00	2.00	15.00	
8	1.00	2.00	15.00	
9	2.00	2.00	11.00	
10	2.00	2.00	11.00	
11	2.00	2.00	13.00	
12	2.00	2.00	13.00	
13	2.00	1.00	15.00	
14	2.00	1.00	15.00	
15	2.00	1.00	19.00	
16	2.00	1.00	19.00	
1 1 Data View \wedge Variable View /				

Tests of Between-Subje cts Effects
Dependent Variable: DV

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Tx	12.250	1	12.250	5.880	.032
Kind	2.250	1	2.250	1.080	.319
Tx *Kind	72.250	1	72.250	34.7	.000
Error	25.000	12	2.083		
Corrected Total	111.750	15			

1-factor
SStotal $=\quad$ SStx +
$111.750=12.250+$ $111.750=12.250+$

Descriptive Statistics
Dependent Variable: DV

Kind						Tx	Mean	Std. Deviation	N
1.00	1.00	11.0000	1.15470	4					
	2.00	17.0000	2.30940	4					
	Total	14.0000	3.62531	8					
2.00	1.00	14.5000	.57735	4					
	2.00	12.0000	1.15470	4					
	Total	13.2500	1.58114	8					
Total	1.00	12.7500	2.05287	8					
	2.00	14.5000	3.16228	8					
	Total	13.6250	2.72947	16					

This analysis is of the same 16 cases as the ANOVA, so the ME of Tx replicates the earlier result.

The SSiv is the same as in the ANOVA above \rightarrow same 8 cases in each Tx group, so same means and same SSiv

However SSerror is much smaller in the factorial than in the ANOVA - see below.

SSerror from the ANOVA is partitioned into SSkind, SSint \& SSerror in the factorial.

From this analysis we see that there is no main effect of Kind, but an interaction of Tx*Kind.

With the more powerful test (because of the smaller error term) we also find a significant Tx main effect that we "missed" in the original ANOVA (the ME is misleading).
SSerror
99.50

2-factor SStotal $=$ SStx + SSkind + SSint + SSerror
$111.750=12.250+2.250+72.250+25.000$

Partitioning existing variance to controlling a confound (\& add power)

In the last case IV \& Kind were orthogonal (4 of each Kind in each Tx group). But what if there was a confounding variable and we had data for it? Look below. Here Tx is confounded by Confound (Tx1 had $31 \mathrm{~s} \& 52 \mathrm{~s}$, whereas Tx 2 has 5 1s \& 3 2s).

Tests of Between-Subjects Effects
Dependent Variable: DV

Source	Type III Sum of Squares	df			
Mean Square	F	Sig.			
Confound	66.150	1	66.150	25.998	.000
Tx	29.400	1	29.400	11.555	.005
Confound *Tx	2.817	1	2.817	1.107	.313
Error	30.533	12	2.544		
Corrected Total	111.750	15			

1-factor | SStotal | $=\quad$ SStx $\quad+$ |
| :--- | :--- |
| | $111.750=12.250 \quad+$ |

2-factor SStotal $=$ SStx + SSconfound + SSint + SSerror
$111.750=29.400+66.150+2.817+30.533$

SStotal	$=$ SStx
111.750	$=29.400+6$ SSonfound

Which do we believe - ANOVA or factorial?
Since we have a confound, we know the ANOVA misrepresents the relationship between the Tx \& DV.

The factorial ANOVA provides "statistical control" of the confound. While not as good as procedural control (constancy or balancing by matching or RA), it is "better than nothing."

Notice that we also get variance partitioning from this factorial. That is, with Confound and the $T x^{*}$ Confound terms in the model the test of the Tx is not only "unconfounded" but it is also more powerful.

SSerror

99.50

Adding variance \rightarrow looking for "additional effects"

Tests of Between-Subjects Effects
Dependent Variable: DV

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	60.500^{a}	3	20.167	2.838	.056
Intercept	6612.500	1	6612.500	930.402	.000
Pop	18.000	1	18.000	2.533	.123
TX	40.500	1	40.500	5.698	.024
Pop *TX	2.000	1	2.000	.281	.600
Error	199.000	28	7.107		
Total	6872.000	32			
Corrected Total	259.500	31			

a. R Squared $=.233$ (Adjusted R Squared $=.151$)

1-factor	SStotal	=	SStx	+		SSerror			
	111.750	=	12.250	+		99.50			
2-factor	SStotal	=	SStx	+	SSpopulation	+	SSint	+	SSerror
	259.5	=	40.5	+	18.00		2.00		199.00

