2xQ Quadratic Models: Using GLM and Multiple Regression for Quadratic Models Including Interactions

Note: Analyses of the linear model for these data are in another handout that should be linked from the same website as this handout.
The data come from a sports psychology study of the motivational effects of labeling. During a week-long basketball camp for aspiring college players, there was an optional "tactical training" session that everyone took once, and was optional for the other nine offerings. Before the first session, the clinic coaches had identified who were the "starters" and who were the "bench players" among the attendees. For the first drill of each session, players were divided into the "starters" and the "bench players" - this was the labeling manipulation. The research question was, "How would this label influence tactical learning?"

GLM: Getting the Quadratic Model \& Comparing Groups at 2, 5 \& 9 Sessions

We need to compute the quadratic term as the square of the mean-centered number of sessions.
*getting the squared-centered quadratic term
compute numsescen_sq = numsessions_cen**2.
*glm quadratic model -- use motv_s1b2 (= to motv_s1b0 from reg) -- will get simple regression line for bench (=2).
*use numsessions_cen -- will get group comparison at mean=0.
*with numsessions mean centered what was 5.28125 (mean) is now 0
what was 2 is now $(2-5.28125)=-3.28125$
what was 5 is now $(5-5.28125)=-.28125$
what was 9 is now $(9-5.28125)=3.71875$.
UNIANOVA tacticalerrors BY motv_s1b2 WITH numsessions_cen numsescen_sq
/METHOD=SSTYPE(3)
/EMMEANS=TABLES(motv_s1b2) WITH(numsessions_cen $=-3.28125$ numsescen_sq=10.7666) COMPARE (motv_s1b2)
/EMMEANS=TABLES(motv_s1b2) WITH(numsessions_cen $=-.28125$ numsescen_sq = .07910) COMPARE (motv_s1b2)
/EMMEANS=TABLES(motv_s1b2) WITH(numsessions_cen = 3.71875 numsescen_sq = 13.8291) COMPARE (motv_s1b2)
/PRINT=DESCRIPTIVE PARAMETER
/DESIGN= motv_s1b2 numsessions_cen numsescen_sq motv_s1b2*numsessions_cen motv_s1b2*numsescen_sq

EMMEANS - estimated marginal means command	
TABLES	- tells what grouping variable to use - will give you means of each group
WITH	-- tells the covariate variable and the specific value at which to compare the groups
	for the quadratic model this must also specify to control the quadratic term at the square of the
	value for which the centered quantitative variable is being controlled
COMPARE	-- requests significance test of the group means

DESIGN -- this is where you tell GLM to compute the interaction
The one limitation of the GLM procedure is that you can't get the regression slope and significance test of it for both groups in the same analysis. To get that weight and significance test for the Starters, you would need to compute a "motv_s2b1" variable and use it instead of the "motv_s1b2" variable. All of the model would be parallel, but you'd get that one new bit of info.

Tests of Between-Subjects Effects

Dependent Variable: tacticalerrors

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	104.634^{a}	5	20.927	14.771	.000
Intercept	277.771	1	277.771	196.066	.000
motv_s1b2	.485	1	.485	.342	.564
numsessions_cen	58.628	1	58.628	41.383	.000
numsescen_sq	16.600	1	16.600	11.717	.002
motv_s1b2*	3.633	1	3.633	2.564	.121
numsessions_cen	12.898	1	12.898	9.104	.006
motv_s1b2*	36.835	26	1.417		
numsescen_sq	873.000	32			
Error	141.469	31			
Total					
Corrected Total					

a. R Squared $=.740$ (Adjusted R Squared $=.690$)
Parameter Estimates
Dependent Variable: tacticalerrors

					95% Confidence Interval	
Parameter	B	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	4.240	.407	10.430	.000	3.404	5.075
[motv_s1b2=1.00]	-.340	.581	-.585	.564	-1.535	.855
[motv_s1b2=2.00]	$0^{\text {a }}$	
numsessions_cen	-.405	.119	-3.400	.002	-.650	.112
numsescen_sq [motv_s1b2=1.00] * numsessions_cen [motv_s1b2=2.00] *	.195	.041	4.803	.000	-.160	
numsessions_cen						
[motv_s1b2=1.00] *	-.268	.168	-1.601	.121	-.613	.279
numsescen_sq						
[motv_s1b2=2.00] *						

numsescen_sq
a. This parameter is set to zero because it is redundant.

Getting the simple regression models and plot for the quadratic model

The linear model - for comparison...

Here are the results from the group comparisons at specific numbers of sessions from this model.

1. motv_s1b2

Estimates

Dependent Variable: tacticalerrors

			95% Confidence Interval	
motv s1b2	Mean	Std. Error	Lower Bound	Upper Bound
starters	6.241^{a}	.537	5.137	7.346
bench	7.670^{a}	.554	6.531	8.809

a. Covariates appearing in the model are evaluated at the
following values: numsessions_cen $=-3.28$, numsescen_sq $=10.77$.

Pairwise Comparisons						
Dependent Variable: tacticalerrors						
(l) motv s1b2	(J) motv s1b2	$\begin{gathered} \text { Mean } \\ \text { Difference (l- } \\ \mathrm{J}) \\ \hline \end{gathered}$	Std. Error	Sig. ${ }^{\text {a }}$	95\% Confidence Interval for Difference ${ }^{\text {a }}$	
					Lower Bound	Upper Bound
starters	bench	-1.429	. 772	. 076	-3.015	. 158
bench	starters	1.429	. 772	. 076	-. 158	3.015
Based on estimated marginal means						

Univariate Tests

Dependent Variable: tacticalerrors

	Sum of Squares	df	Mean Square	F	Sig.
Contrast	4.855	1	4.855	3.427	.076
Error	36.835	26	1.417		

The F tests the effect of motv_s1b2. This test is based on the linearly
independent pairwise comparisons among the estimated marginal means.

2. motv_s1b2

Dependent Variable: tacticalerrors				
			95\% Confid	nce Interval
motv s1b2	Mean	Std. Error	Lower Bound	Upper Bound
starters	$4.090^{\text {a }}$	412	3.244	4.936
bench	$4.369^{\text {a }}$.399	3.548	5.190
a. Covariates appearing in the model are evaluated at the following values: numsessions_cen $=-.28$, numsescen_s $q=$. 08 .				

Pairwise Comparisons

(l) motv s1b2	(J) motv s1b2	Mean Difference (lJ)	Std. Error	Sig. ${ }^{\text {a }}$	95\% Confidence Interval for Difference ${ }^{\text {a }}$	
					Lower Bound	Upper Bound
starters	bench	-. 279	. 573	. 631	-1.458	. 900
bench	starters	. 279	. 573	. 631	-. 900	1.458

Based on estimated marginal means
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: tacticalerrors

	Sum of Squares	df	Mean Square	F	Sig.
Contrast	.335	1	.335	.237	.631
Error	36.835	26	1.417		

The F tests the effect of motv_s1b2. This test is based on the linearly
independent pairwise comparisons among the estimated marginal means.

A much bigger group difference at 2 sessions than was obtained from the linear model.

No group difference at 5 sessions.

Estimates
Dependent Variable: tacticalerrors
Dependent Variable: tacticalerrors

			95% Confidence Interval	
motv s1b2	Mean	Std. Error	Lower Bound	Upper Bound
starters	1.566^{a}	.603	.326	2.806
bench	5.434^{a}	.537	4.330	6.538

a. Covariates appearing in the model are evaluated at the
following values: numsessions_cen $=3.72$, numsescen_sq
$=13.83$.

A much bigger group difference at 9 sessions than was obtained from the linear model.

Dependent Variable: tacticalerrors						
(l) motv s1b2	(J) motv s1b2	$\begin{gathered} \text { Mean } \\ \text { Difference (l- } \\ \mathrm{J}) \\ \hline \end{gathered}$	Std. Error	Sig. ${ }^{\text {b }}$	95\% Confidence Interval for Difference ${ }^{\text {b }}$	
					Lower Bound	Upper Bound
starters	bench	$-3.868{ }^{\text {² }}$. 808	. 000	-5.528	-2.207
bench	starters	$3.868^{\text {² }}$. 808	000	2.207	5.528

rginal means
ean difference is significant at the .050 level.
b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: tacticalerrors

	Sum of Squares	df	Mean Square	F	Sig.
Contrast	32.481	1	32.481	22.927	.000
Error	36.835	26	1.417		

The F tests the effect of motv_s1b2. This test is based on the linearly

Same Quadratic Model - but testing Performance-\#sessions Slope \& Curve for Starters

*recoding original grouping variable with starters as the comparison group (=2).
*remember to make value label for this new version of variable - is used in GLM output.
*centering the original quant variable (again- just to keep it around).
if (motv_s1b2 = 1) motv_s2b1 = 2.
if (motv_s1b2 = 2) motv_s2b1 = 1 .
compute numsessions_cen = numsessions -5.28125 .

```
UNIANOVA tacticalerrors BY motv_s2b1 WITH numsessions_cen numsescen_sq
    /METHOD=SSTYPE(3)
    /PRINT=DESCRIPTIVE PARAMETER
    /DESIGN= motv_s1b2 numsessions_cen numsescen_sq motv_s2b1*numsessions_cen motv_s2b1*numsescen_sq.
```

Parameter Estimates						
Dependent Variable: tacticalerrors						
					95\% Confid	nce Interval
Parameter	B	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	3.900	.416	9.385	. 000	3.046	4.754
[motv_s2b1 $=1.00$]	. 340	. 581	. 585	. 564	-. 855	1.535
[motv_s2b1 $=2.00$]	$0^{\text {a }}$
numsessions_cen	-. 673	. 118	-5.709	. 000	-. 916	-. 431
numsescen_sq	. 012	. 045	. 273	. 787	-. 080	. 105
[motv_s2b1=1.00] * numsessions_cen	. 268	. 168	1.601	.121	-. 076	. 613
[motv_s2b1=2.00] * numsessions_cen	$0^{\text {a }}$	-	-	.	-	
$\begin{aligned} & \text { [motv_s2b1=1.00] * } \\ & \text { numsescen_sq } \end{aligned}$. 183	. 061	3.017	. 006	. 058	. 308
$\begin{aligned} & {[\text { motv_s2b1=2.00] * }} \\ & \text { numsescen_sq } \end{aligned}$	$0^{\text {a }}$	

a. This parameter is set to zero because it is redundant.

The only difference between this model from the last is the change in the reference group (now starters =2).
This produces the following changes in the regression weights

- The regression weight \& significance test for numsessions_cen now refers to the slope of the tactical error\#sessions regression line for the starters \leftarrow our reason for running this analysis !!
- The regression weight \& significance test for numsescen_sq now refers to the curve of the tactical error\#sessions regression line for the starters \leftarrow our reason for running this analysis !!
- The constant changes, because it now refers to the expected value for the starters with the average amount of practice \leftarrow our reason for running this analysis !!
- The sign of the group comparison regression weight will switch, because it is comparing the same group differences, at the same (mean=0) value of \#sessions, but with starters (=2) as the reference/comparison group
- The sign of the linear interaction regression weight will switch, because it is comparing the same two slopes, but with starters (=2) as the reference/comparison group
- The sign of the quadratic interaction regression weight will switch, because it is comparing the same two curves, but with starters (=2) as the reference/comparison group

Overall model

- The model has $\mathrm{R}^{2}=.74$, with $\mathrm{F}(5,26)=14.771 \mathrm{p}<.001, \mathrm{MSe}=1.417$

Interaction

- There is a non-significant linear interaction of number of sessions and motivational label they relate to number of tactical errors committed, $\mathrm{F}(1,26)=2.564, \mathrm{p}=.121, \mathrm{MSe}=1.417$
- There is a significant quadratic interaction of number of sessions and motivational label they relate to number of tactical errors committed, $\mathrm{F}(1,26)=9.104, \mathrm{p}=.006, \mathrm{MSe}=1.417$
- Describing the interaction as the regression difference for the $\mathbf{2}$ groups
o The tactical error-number of sessions linear regression slope is negative for Bench players, $b=-.405, t=-3.4$, $p=.002$ \& the there is a positive quadratic for this group, $b=.195, t=4.803, p<.001$
0 The tactical error-number of sessions linear regression slope is negative for Starters, $b=-.673, t=-5.709, p$, $.001 \&$ there is no quadratic curve for this group, $b=.012, t=.273, p=787$
o From the non-significant linear interaction term, we know that the slope for the Starters is "not significantly more negative" than for the Bench players
o From the significant quadratic interaction term, we know that the regression line for the Starters is "significantly more curved" than for the Bench players
- Describing the interaction as the group difference at different \#sessions
o At 2 sessions, the starters (6.241) had marginally fewer errors than the bench players (7.670), p=. 076
o At 5 sessions, the starters (4.090) had an equivalent average number of errors as the bench players (4.369), $p=.631$
o At 9 sessions, the starters (1.566) had fewer average errors than the bench players (5.434), p < . 001

Number of sessions

- There is an overall linear effect for number of sessions, $\mathrm{F}(1,26)=41.383, \mathrm{p}<.001, \mathrm{MSe}=1.417$
- There is an overall quadratic effect for number of sessions, $\mathrm{F}(1,26)=11.717, \mathrm{o}=.002, \mathrm{MSe}=1.417$
- However, the differential pattern of the simple regression slopes of number of sessions for the two motivational groups means that the overall shape of this relationship is misleading

Motivational Labeling

- There is no overall effect of labeling, $\mathrm{F}(1,26)=.342, \mathrm{p}=.564, \mathrm{MSe}=1.417$
- However, the differential pattern of the simple group differences for different numbers of sessions means that the overall pattern is misleading

Multiple Regression: Getting the Quadratic Model \& Comparing Groups at 2, 5 \& 9 Sessions
We need to compute several additional terms to obtain this model using multiple regression!
Comparing the groups at $\mathbf{2}$ sessions (with bench as the comparison group).
if $($ motv_s1b2 $=1)$ motv_s1b0 $=1$.
if $($ motv_s1b2 $=2)$ motv_s1b0 $=0$.
compute numsessions_2cen $=$ numsessions -2 .
compute numses2cen_sq = numsessions_2cen **2.
compute numsess2cen_motvs1b0_int = motv_s1b0 * numsessions_2cen.
compute numsess2censq_motvs1b0_int = motv_s1b0 * numses2cen_sq.

Comparing the groups at 5 sessions (with bench as the comparison group).
if (motv_s1b2 = 1) motv_s1b0 $=1$.
if (motv_s1b2 = 2) motv_s1b0 $=0$.
compute numsessions_5cen = numsessions -5 .
compute numses5cen_sq = numsessions_5cen **2.
compute numsess5cen_motvs1b0_int = motv_s1b0 * numsessions_5cen.
compute numsess5censq_motvs1b0_int = motv_s1b0 * numses5cen_sq.

Comparing the groups at 9 sessions (with bench as the comparison group).

```
if (motv_s1b2 = 1) motv_s1b0 = 1.
if (motv_s1b2 = 2) motv_s1b0 = 0.
compute numsessions_9cen = numsessions - 9.
compute numses9cen_sq = numsessions_9cen **2.
compute numsess9cen_motvs1b0_int = motv_s1b0 * numsessions_9cen.
compute numsess9censq_motvs1b0_int = motv_s1b0 * numses9cen_sq.
```

Getting the regression slope \& curve for the Starters (centering at 5 - any centering will get the same slope \& curve)
if (motv_s1b2 = 1) motv_s2b1 = 2 .
if (motv_s1b2 = 2) motv_s2b1 = 1 .
compute numsessions_5cen = numsessions - 5 .
compute numses5cen_sq = numsessions_5cen **2.
compute numsess5cen_motv s1b0_int = motv_s1b0 * numsessions_5cen.
compute numsess5censq_motv s1b0_int = motv_s1b0 * numses5cen_sq.

