
Coding Binary Categorical Variables 
 
Let’s get the 2-group ANOVA to test for reptile quality differences between stores that do and do not have separate 
reptile departments. 
 
 oneway    reptgood by reptdept (1,2). 
 
 

 

 
 
 
  
1 & 2 Unit Coding of Binary Predictors 
 
We know we can put binary predictors into a regression model.  How do those results compare with the ANOVA? 
  
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA 
  /DEPENDENT reptgood 
  /METHOD=ENTER reptdept. 
 

 

  
 
  

 
 
You should notice -- we get exactly the same information from the two analyses 
 
 the F and and p-values are the same from the ANOVA and regression (as are the SS, MS and df)!! 
 computing eta-squared from the ANOVA, we get SSBG  / SSTot =  33 .33 / 68.67 =  .4854, the R²!! 
 the constant tells the mean of the group coded = 0  but there isn’t one in this 1 & 2 unit coding! 
 the regression weight tells the mean differences between the mean of the roup coded=1 and the group coded=2  

 4.00 + 3.33 =  7.33 
 
 
As we talked about before, when working with several of the models we’ll be learning soon, it can make things much 
easier if we have “sensible zeros”.  Also, sometimes we will want to “point” a regression model at a particular group of 
a binary or categorical variable, by setting that group to “0”. 

ANOVAb

33.333 1 33.333 9.43 .012a

35.333 10 3.533

68.667 11

Regression

Residual

Total

Model
1

Sum of
Squares df

Mean
Square F Sig.

Predictors: (Constant), type or reptile departmenta. 

Dependent Variable: rating of reptile quality - 1-10 scaleb. 



 
 
Time to learn about re-coding categorical predictors 
 
Re-coding (or coding) the conditions of a binary variable is simply re-valuing the codes given to specific conditions – a 
kind of additive linear transformation. The result is to improve the interpretability of the regression weights and their 
significance tests for binary. 
 
As you know, multiple-category variables cannot be included in a regression or multiple regression model, because the 
“values” of the variable don’t reflect interval quantitative differences among the groups.  However, we can re-code 
multiple category variables so they can be included in multiple regression models. 
 
Keep in mind -- the point here is not that you should use regression instead of ANOVA.  This is just the first in 
learning how to incorporate qualitative variables into regression analyses, so that you can use multiple 
regression as a truly all-purpose analytic tool!! 
 
 
 
A reminder about naming variables… 
 
As with the re-centering of quantitative variables, you may often end up having multiple “versions” of a coded 
categorical  in your data set. So, variable names become increasingly important.  Most statistical packages have some 
capacity to represent the meanings of the condition values for categorical variables (e.g., “Values” in SPSS).  
However, if you are transferring data across platforms or software packages, often these sorts of ancillary information 
get dropped!  For example, if you export your SPSS .sav data set as an xls file, the Values (and Type, Label, Missing, 
etc) information is dropped, and stays dropped if you later transfer that xls file back into an SPSS data file!  
So, if becomes important to use variable names that carry key details about the variable – like which condition has 
what value. 
 
 
 
 
  



0 & 1 Dummy Coding for a Binary Predictor 
 
When making a dummy code for a binary predictor, one of the group of the binary variable is selected at the 
"comparison group", and receives a code of "0", the other is the “target group” and  is coded "1".  Syntax to do this a 
couple of ways is shown below. 
 
Some procedures in SPSS and other packages will create the dummy codes for you.  It is important to know what 
condition is set as the “target=1” and “comparison=0”.  In SPSS, the highest coded conditions is set as the 
“comparison= 0” condition. 
 
The original variable coded:   1=not separate departments (mean=4.00)     2=separate reptile department (mean=7.33) 
 
 
Using a “Recode” command 
 
recode reptdept (1=1) (2=0) into repdep_1not_0sep. 
 

 
 
 “separate dept” is the comparison=0 group 

 
  
Using a set of “If” command 
 
If (reptdept =1) repdep_1not_0sep = 1. 
If (reptdept =2) repdep_1not_0sep = 0. 

 
 
 “separate dept” is the comparison=0 group 

 
 
 
 
 
Regression results using 0 & 1 Dummy Coding for a Binary Predictor 
 
 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA 
  /DEPENDENT reptgood 
  /METHOD=ENTER repdep_1not_0sep. 
   
 

 

 

 
Using the dummy codes in a regression produces the same model fit and F-test as the ANOVA and the unit-coding 
regressions above.  However, the regressions weight and constant are different.. 
 
 The constant tells the mean of the comparison group coded = 0  mean of the separate department stores = 7.33 
 The regression weight tells the mean differences between the comparison group mean and the target group  

mean     7.33 + (-3.33) = 4.00 
 
 
  



1 * -1 Effect Coding for a Binary Predictor 
 
When we make an effect code for a binary predictor, one of the values of the binary variable is selected at the 
"comparison group", and receives a code of "-1", the other group is the “target group” and is coded "1".  Syntax to do 
this a couple of ways is shown below. 
 
The original variable coded:   1=not separate departments (mean=4.00)     2=separate reptile department (mean=7.33) 
                                                 

Also, the grand mean was 5.67 
 
 
 
Using “Recode” command 
 
recode reptdept (1=1) (2=-1) into repdep_1not_n1sep. 
 

 
 
 “separate dept” is the comparison = -1 group 

  
Using sets of “If” command 
 
If (reptdept =1) repdep_1not_n1sep = 1. 
If (reptdept =2) repdep_1not_n1sep = -1. 
 

 
 
 “separate dept” is the comparison = -1 group 

 
 

 
 
 
Regression results using -1 & 1 Effect Coding for a Binary Predictor  
 
 
REGRESSION  
  /STATISTICS COEFF OUTS R ANOVA  
  /DEPENDENT reptgood  
  /METHOD=ENTER repdep_1not_n1sep. 

 

 

 
 
Using the effect codes in a regression produces the same model fit and F-test as the ANOVA, unit-coding, and the 
dummy coding regressions above.  However, the regressions weight and constant are different.. 
 
 The constant tells the grand mean mean (the midpoint of -1 & 1 is 0)   5.667 
 The regression weight tells the mean differences between the grand mean and the target group mean 

 5.667 + (-1.67) = 4.00 
 
 
  
 
 
 
  



.5 * -.5 Effect Coding for a Binary Predictor 
 
Another variation of effect coding is to use weights of .5 & -.5.  When we make an effect code for a binary predictor, 
one of the values of the binary variable is selected at the "comparison group", and receives a code of "-.5”, the other 
group is the “target group” and is coded ".5".  Syntax to do this a couple of ways is shown below. 
 
The advantage of using these weights is that there is a 1-unit difference between them, and so, the regression weight 
will tell the mean difference between the comparison group and the target group (instead of telling the difference 
between the grand mean and the target group mean). 
 
The original variable coded:   1=not separate departments (mean=4.00)     2=separate reptile department (mean=7.33) 
                                                 

Also, the grand mean was 5.67 
 
 
 
Using “Recode” command 
 
recode reptdept (1=.5) (2=-.5) into repdep_5not_n5sep. 
 

 
 
 “separate dept” is the comparison = -.5 group 

  
Using sets of “If” command 
 
If (reptdept =1) repdep_5not_n5sep = .5. 
If (reptdept =2) repdep_5not_n5sep = -.5. 
 

 
 
 “separate dept” is the comparison = -.5 group 

 
 

 
 
 
Regression results using -.5 & .5 Effect Coding for a Binary Predictor  
 
 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA 
  /DEPENDENT reptgood 
  /METHOD=ENTER repdep_5not_n5sep. 
   
 

 

 

 
Using the effect codes in a regression produces the same model fit and F-test as the ANOVA, unit-coding, the dummy 
coding, and the 1 & -1 effect coding regressions above.  However, the regressions weight and constant are different.. 
 
 The constant tells the grand mean mean (the midpoint of -.5 & .5 is 0)   5.667 
 The regression weight tells the difference between the comparison group mean and the target group mean 

 7.333 +  (-3.333) = 4.00 
  



About using Effect Codes to Compare Groups with Unequal-n 
 
Here are results comparing stores “with separate” and “not separate” reptile departments from a sample with uequal-n. 
 
ONEWAY reptgood96 BY reptdept 
  /STATISTICS DESCRIPTIVES 
 

 

   
 The sample grand mean is 5.33, which is the weighted mean of 4.00 for 9 “not separate” stores and 7.33 for 6 “with 
separate” reptile departments  ( (9 * 4.00) + (6 * 7.33) ) / 16 =  (36 + 44) / 15  = 5.333. 
 
However, the estimate of the population grand mean would be the unweighted mean of the group means (or the 
midpoint between the group means)   ( 4.00 + 7.333) / 2  = 5.667 
 
Why?  The estimate of the population mean does not assume that the relative sample sizes of the groups represents 
the relative population sizes of the groups.  
 
When we apply effect coding to an unequal-n groups comparison, the constant will represent the expected population 
grand mean (the midpoint or unweighted average of the group means) not the sample grand mean. 
 
Here’s the model obtained using 1 & -1 effects coding 
 

  
 
The constant tells the estimate of the population grand mean mean (the midpoint of -1 & 1 is 0)  5.667 
 
The regression weight tells the difference between the population estimate of the grand mean and the mean of the 
target group (separate reptile departments = 1)   5.667 + (-1.667) = 4.00 
 
 
Equivalent results are obtained if we use -.5 & .5 effects coding. 
 

 
 
The constant tells the estimate of the population grand mean mean (the midpoint of -.5 & .5 is 0)  5.667 
 
The regression weight tells the difference between the comparison group mean and the target group mean 

 7.333 +  (-3.333) = 4.00 



Using SPSS GLM with Binary Predictors 
 
In addition to regression, SPSS also offers a GLM procedure that can be used to build models from combinations of 
quantitative and categorical variables.  GLM (UNINOVA) will “do several things for us”, including create coded 
categorical variables & interactions, as well as perform various kinds of pairwise comparisons. 
 
 
UNIANOVA reptgood BY reptdept 
  /METHOD=SSTYPE(3) 
  /EMMEANS=TABLES(reptdept) COMPARE(reptdept) 
  /PRINT=DESCRIPTIVE PARAMETER 
  /DESIGN=reptdept. 

 
  format is “DV”  by “categorical variable IV” 
 SS to test each effect controlling for all others  
 gets specific pairwise group comparisons 
 gets sample descriptives and regression model weights 
 defines predictors to include in model 

 
GLM will code the categorical reptdept variable and include it in the model.  GLM actually uses two different codings of 
categorical variables and presents results for each. 
 

The original coding of reptdept was  1=not separate department    2=separate reptile department 
 
For the ANOVA & F-test results, categorical variables are effect coded using .5 & -.5 code values.  The highest valued 
group is coded as the comparison group = -.5.  The results will be the same as when we recoded using: 

recode reptdept (1=.5) (2=-.5) into repdep_5not_n5sep. 
 

For the “parameter estimates,” categorical variables are dummy coded using 1 & 0 values.  The highest valued group 
is coded as the comparison group = 0.  The results will be the same as when we recoded using: 

recode reptdept (1=1) (2=0) into repdep_1not_0sep. 
 

 
“Descriptives” are the sample uinvariate 
statistics. 

 
For this simple model, the ANOVA table 
provides the same information as the related 
table in the multiple regression analysis. 
 
However, with more complex models, the 
GLM ANOVA table will give an F-test for 
each predictor/effect in the model. 
 
 

 

 
For these parameter estimates, categorical 
variables are dummy coded, with the highest 
valued condition coded as the comparison 
group = 0. 
 
With this dummy coding: 
Constant  mean of group coded 0 
(separate dept) 
Reptdept=1  difference between 
comparison group  . .                       and the 
target group 

 
  



 

 
For a very simple design like this, the 
estimated means, pairwise comparisons and 
Univariate tests will match the information 
given in the ANOVA and parameter estimates.  
 
For more complex models, the estimated 
means will provide important follow-up 
analyses of categorical variable effects that are 
“controlled for” other effects in the model. 
 
 
The pairwise comparison show the mean 
difference between the groups, and provide a 
significance test of that difference. 
 
Notice that the mean difference, Std, Error and 
p-values match those from the “Parameter 
Estimates” table above 

 
 
In this simple model, this ANOVA comparison 
of the two group means is redundant with the 
pairwise comparison of them just above. 
 
In more complex models, these will provide 
usefully different pieces of information. 

 


