Complex Regression Models with Interactions

We decided to continue our study of the relationships among amount and difficulty of exam practice with exam performance in the first graduate research methods/data analysis course by including the program Psychology graduate students were in (1=experimental 2=developmental and 3=clinical programs), their future employment intentions (1=quantitative, 2=research), the number of stats courses they had taken before the current one, and a measure of academic performance motivation.

Descriptive Statistics

The univaraite stats for our quantitative predictors is shown at the right.

*practice difficulty X #practices interations.

exe.

compute practdif linprac int = prac1e0s * prac mcen.

compute practdif quadprac int = prac1e0s * prac mcquad.

	N	Minimum	Maximum	Mean	Std. Deviation
prac	143	1.00	10.00	5.8182	2.23807
pristats	143	.00	5.00	2.3986	1.04234
motv	143	24.00	81.00	51.0629	12.10530
Valid N (listwise)	143				

Linear and quadratic interactions between a

binary and a quantitative variable

Based on literature reviews and pilot studies, we chose to explore certain nonlinear and interaction effects in the model. The variable preparations for the regression analysis are shown below

```
*mean-centering quant variables.
compute prac mcen = prac - 5.8182.
compute pristat mcen = pristats - 2.3986.
compute motv_mcen = motv - 51.629.
*computing quadratic terms for quant variables.
compute prac_mcquad = (prac - 5.8182) ** 2.
compute pristat_mcquad = (pristats - 2.3986) ** 2.
compute motv_mcquad = (motv - 51.0629) ** 2.
*dummy code for job program.
if (prog_1exp_2dev_3clin = 1) prog_1exp_0dev_0clin = 1.
                                                                           Clinical is comparison group
if (prog_1exp_2dev_3clin = 2) prog_1exp_0dev_0clin = 0.
if (prog 1exp 2dev 3clin = 3) prog 1exp 0dev 0clin = 0.
                                                                           1st code compares experimental to clinical
                                                                           2<sup>nd</sup> code compares developmental to clinical
if (prog 1exp 2dev 3clin = 1) prog 0exp 1dev 0clin = 0.
if (prog_1exp_2dev_3clin = 2) prog_0exp_1dev_0clin = 1.
if (prog_1exp_2dev_3clin = 3) prog_0exp_1dev_0clin = 0.
*dummy code for job interest.
if (jobint1qnt \ 2rsh = 1) \ jobint1qnt0rsh = 1.
                                                                           Research is the comparison group
if (jobint1qnt_2rsh = 2) jobint1qnt0rsh = 0.
*dummy code for practice difficulty.
if (prac1e2s = 1) prac1e0s=1.
if (prac1e2s = 2) prac1e0s=0.
*code for job interest X practice difficulty interaction.
                                                                           Interaction between dummy coded binary
compute jobint practdif int = jobint1qnt0rsh * prac1e0s.
                                                                           variables
*practice X motivation interactions.
compute prac_motv_linlinint = prac_mcen * motv_mcen.
                                                                           The "full set" of interactions between two
compute prac moty quadlinint = prac mcquad * moty mcen.
                                                                           quantitative variables
compute prac_motv_linguadint = prac_mcen * motv_mcquad.
compute prac moty quadquadint = prac mcquad * moty mcquad.
```

REGRESSION /DEPENDENT testperfc /METHOD=ENTER prac_mcen prac_mcquad motv_mcen motv_mcquad pristat_mcen pristat_mcquad prog_1exp_0dev_0clin prog_0exp_1dev_0clin jobint1qnt0rsh prac1e0s jobint_practdif_int prac_motv_linlinint prac_motv_quadlinint prac motv linquadint prac motv quadquadint

 \leftarrow

← centered quantitative variables & quadratic terms

`

← dummy-coded 3-group and binary variables

←

← interaction of two quantitative variables

←

← linear & quadratic interactions of 2 quantitative variables

 linear and quadratic interactions of binary and quantitative variable

Model Summary

practdif_linprac_int practdif_quadprac_int.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.867ª	.752	.719	10.08879

a. Predictors: (Constant), practdif_quadprac_int, pristat_mcquad, prac_motv_linlinint, prog_0exp_1dev_0clin, jobint1qnt0rsh, pristat_mcen, practdif_linprac_int, motv_mcen, motv_mcquad, prac_motv_linquadint, prac1e0s, prog_1exp_0dev_0clin, prac_mcquad, prac_motv_quaddinint, jobint_practdif_int, prac_mcen, prac_motv_quadquadint

The model accounts for nearly 75% of the variance of exam performance, which is statistically significant.

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
ſ	1 Regression	38624.896	17	2272.053	22.322	.000b
I	Residual	12722.970	125	101.784		
l	Total	51347.866	142			

a. Dependent Variable: testperfc

Coefficients^a

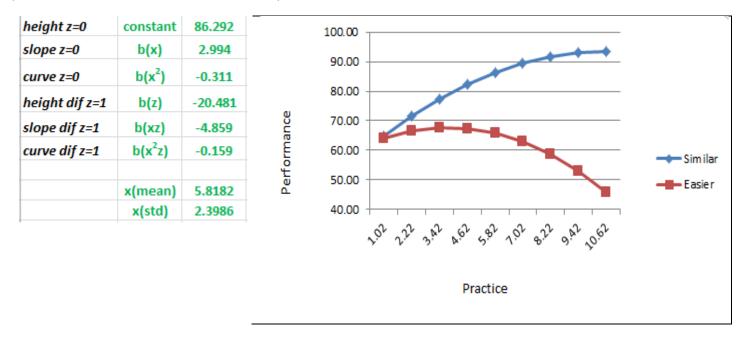
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	86.292	2.860		30.168	.000
	prac_mcen	2.994	.731	.352	4.093	.000
	prac_mcquad	311	.280	095	-1.109	.269
	motv_mcen	.713	.105	.454	6.774	.000
	motv_mcquad	039	.007	369	-5.630	.000
	pristat_mcen	-1.434	.869	079	-1.650	.101
	pristat_mcquad	588	.653	042	900	.370
	prog_1exp_0dev_0clin	-2.000	2.625	047	762	.448
	prog_0exp_1dev_0clin	-5.750	2.135	149	-2.693	.008
	jobint1 qnt0rsh	10.745	2.385	.278	4.505	.000
	prac1e0s	-20.481	3.122	535	-6.560	.000
	jobint_practdif_int	10.808	3.566	.243	3.031	.003
	prac_motv_linlinint	.017	.034	.027	.510	.611
	prac_motv_quadlinint	.003	.013	.018	.241	.810
	prac_motv_linquadint	005	.002	176	-2.448	.016
	prac_motv_quadquadint	.001	.001	.093	1.081	.282
	practdif_linprac_int	-4.859	.832	388	-5.840	.000
	practdif_quadprac_int	159	.331	040	481	.631

a. Dependent Variable: testperfo

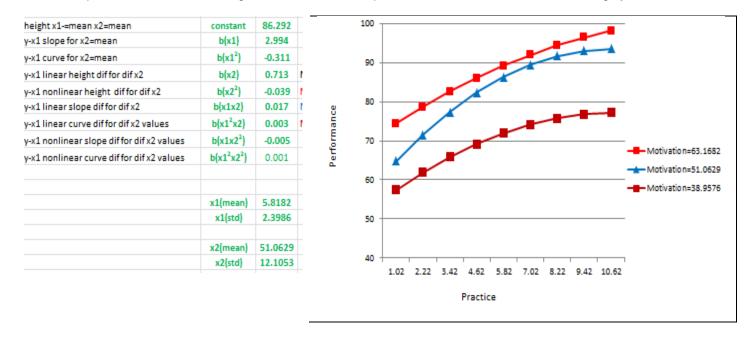
b. Predictors: (Constant), practdif_quadprac_int, pristat_mcquad, prac_motv_linlinint, prog_0exp_1dev_0clin, jobint1qnt0rsh, pristat_mcen, practdif_linprac_int, motv_mcen, motv_mcquad, prac_motv_linquadint, prac1e0s, prog_1exp_0dev_0clin, prac_mcquad, prac_motv_quadlinint, jobint_practdif_int, prac_mcen, prac_motv_quadquadint

Interpreting the multiple regression weights

As we tour these interpretations, remember because of the coding and centering we used, the "comparison group" is clinical students having a research interest using the similar difficulty practices, and who had the average amount of practice, the average amount of motivation and the average number of prior stats courses. Also, you have to be careful about which effects can be generalized to other groups, depending on whether or not they are involved in an interaction.


prac_mcen	Each practice is expected to increase performance by 2.994%, for clinical students with a research interest using the similar difficulty practices, and who had average motivation & number
prac_mcquad	of prior stats courses. There is no quadratic component to the relationship between practice and performance, for clinical students with a research interest using the similar difficulty practices, and who had
motv_mcen	average motivation & number of prior stats courses. Each 1-unit increase in motivation score is expected to increase performance by .713%, for clinical students with a research interest using the similar difficulty practices, and who had the
motv_mcquad	average amount of practice and the average number of prior stats courses. There is an inverted-U-shaped quadratic component to the relationship between motivation and test performance, for clinical students with a research interest using the similar difficulty practices,
pristat_mcen	and who had the average amount of practice and the average number of prior stats courses. There is no relationship between number of prior stats courses taken and test performance, for clinical students with a research interest using the similar difficulty practices, and who
pristat_mcquad	had the average amount of practice and the average motivation. There is no quadratic component to the relationship between motivation and performance, for clinical students with a research interest using the similar difficulty practices, and who
prog_1exp_0dev_0d	had the average amount of practice and the average motivation. There is no performance difference between clinical and experimental students with a research interest using the similar difficulty practices, and who had the average amount of
prog_0exp_1dev_0d	practice, the average number of prior stats courses, and the average motivation. Developmental students performed 5.75% poorer than clinical students with a research interest using the similar difficulty practices, and who had the average amount of practice,
jobint1qnt0rsh	the average number of prior stats courses, and the average motivation. Those interested in a quant job have an expected score 10.745 higher than those interested in a research job, for clinical students using the similar difficulty practices, and who had the average
prac1e0s	amount of practice, the average amount of motivation and the average number of prior stats courses. Those who used the easier practice scores 20.481 point lower than those who used the same difficulty practice, among clinical students having a research interest and who had the average
	amount of practice, the average amount of motivation and the average number of prior stats
iobint proptdif int	Courses.
jobint_practdif_int	Those interested in a quant job scores 10.808 higher than those interested in a research job, among clinical students who had the average amount of practice, the average amount of motivation and the average number of prior stats courses.
prac_motv_linlinint	There is no linear interaction of practice and motivation for clinical students having a research interest using the similar difficulty practices, and who had the average amount of
prac_motv_quadlinir	research interest using the similar difficulty practices, and the average number of prior stats
prac_motv_linquadir	research interest using the similar difficulty practices, and the average number of prior stats courses. (I wouldn't work too hard to articulate the pattern of this comples interaction. I'd
prac_motv_quadqua	show them the plot – see below!) There is no quadratic practice by quadratic motivation interaction for clinical students having a research interest using the similar difficulty practices, and the average number of prior stats courses.
practdif_linprac_int	The slope of the performance-practice regression line is 4.859 less for those in the easier practice condition, for clinical students having a research, the average amount of motivation and the average number of prior stats courses.
practdif_quadprac_i	· · · · · · · · · · · · · · · · · · ·

amount of motivation and the average number of prior stats courses.


With models this complex, plotting specific nonlinear and interaction effects can greatly enhance the interpretation of the regression weights. Here are some additional details that further elaborate and describe the model!

The interaction of #Practices & Practice difficulty was of particular interest in this analysis. Using the "2xQ nonlinear" tab of the plotting computator, we obtained the following.

Performance was similar after 1 trial, but diverged sharply from there! The performance difference between the groups increased with each additional practice. Practice led to continual improvement for the Similar group, with performance asymptote apparent at around 9 practices. Practice led to an initial small performance increase, but after 4 practices performance decreased with each additional practice.

The complex interaction between #Practices and Motivation is also easier to see when plotted. Using the "QxQ nonlinear" tab we obtained the following. Additional practice continued to lead to improved performance for all motivational levels, but while the relationship between motivation and performance was nearly linear for low amounts of practice, at higher amounts of practice, those with average levels of motivation performed similar to those who were highly motivated.

SPSS GLM Analysis

We obtained the same model, and a bit more info about it, using GLM! The important difference between running this model in multiple regression and in GLM is that we used dummy-coded categorical variables in multiple regression, but we will use the original categorical variables in the GLM and SPSS will do the coding for us. We will, however, still do the mean centering and compute the quadratic terms. We also have to construct the interaction terms within the Design subcommand!

UNIANOVA testperf

BY prac1e2s
jobint1qnt_2rsh
prog_1exp_2dev_3clin
WITH prac_mcen pristat_mcen motv_mcen
prac_mcquad pristat_mcquad motv_mcquad

/METHOD=SSTYPE(3) /PRINT = PARAMETER

/PLOT=PROFILE(prac1e2s*jobint1qnt_2rsh)

/EMMEANS TABLES (jobint1qnt_2rsh by prac1e2s) COMPARE (prac1e2s)

/EMMEANS TABLES (prog_1exp_2dev_3clin) COMPARE (prog_1exp_2dev_3clin)

/DESIGN=

prac_mcen prac_mcquad
motv_mcen motv_mcquad
pristat_mcen pristat_mcquad
prog_1exp_2dev_3clin
jobint1qnt_2rsh
prac1e2s
jobint1qnt_2rsh*prac1e2s
motv_mcen*prac_mcen motv_mcen*prac_mcquad
motv_mcquad*prac_mcen motv_mcquad*prac_mcquad
prac1e2s*prac_mcen prac1e2s*prac_mcquad.

- ← list the DV
- list the categorical variables SPSS will code these with the highest valued group as the comparison group
- list the mean-centered quant variables and the quad terms
- ← asks for unique effects model (same as mreg)
- ← gets the regression weights
- ← plot of practice difficulty X job interest interaction
- gets the simple effect pairwise comparisons to describe the difficulty X job interest interaction
- gets the corrected/expected means and comparisons among the program groups
- ← specifies the model notice that the interactions are "built from" the main effect terms

Tests of Between-Subjects Effects

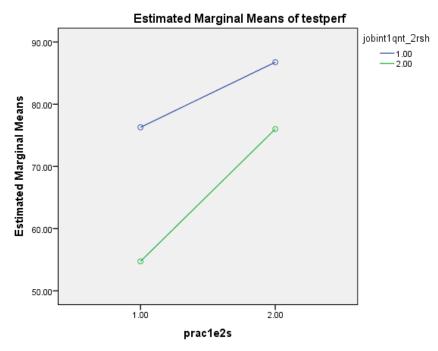
Dependent Variable: testperf

Dependent variable, testpen					
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	38624.896 ^a	17	2272.053	22.322	.000
Intercept	225531.743	1	225531.743	2215.793	.000
prac_mcen	113.794	1	113.794	1.118	.292
prac_mcquad	382.139	1	382.139	3.754	.055
motv_mcen	4671.171	1	4671.171	45.893	.000
motv_mcquad	3226.132	1	3226.132	31.696	.000
pristat_mcen	277.154	1	277.154	2.723	.101
pristat_mcquad	82.395	1	82.395	.810	.370
prog_1exp_2dev_3clin	787.453	2	393.727	3.868	.023
jobint1qnt_2rsh	8097.357	1	8097.357	79.555	.000
prac1e2s	3774.517	1	3774.517	37.084	.000
prac1e2s * jobint1 qnt_2rsh	934.942	1	934.942	9.186	.003
prac_mcen * motv_mcen	26.518	1	26.518	.261	.611
motv_mcen * prac_mcquad	5.921	1	5.921	.058	.810
prac_mcen * motv_mcquad	609.748	1	609.748	5.991	.016
prac_mcquad * motv_mcquad	119.044	1	119.044	1.170	.282
prac1e2s * prac_mcen	3470.827	1	3470.827	34.100	.000
prac1e2s * prac_mcquad	23.576	1	23.576	.232	.631
Error	12722.970	125	101.784		
Total	847217.828	143			
Corrected Total	51347.866	142			

The F-tests in the ANOVA table parallel the t-tests of the regression weights, except for the career interest variable, which is expressed as a 3-group comparison in the F-tests and dummy code-pairwise comparisons in the t-tests.

The regression weights are the same values and interpretations as were obtained from the multiple regression model earlier.

Parameter Estimates


Dependent Variable: testperf

_ ·					95% Confidence Interval		
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	
Intercept	86.292	2.860	30.168	.000	80.630	91.953	
prac_mcen	2.994	.731	4.093	.000	1.546	4.441	
prac_mcquad	311	.280	-1.109	.269	866	.244	
motv_mcen	.713	.105	6.774	.000	.505	.922	
motv_mcquad	039	.007	-5.630	.000	053	025	
pristat_mcen	-1.434	.869	-1.650	.101	-3.154	.286	
pristat_mcquad	588	.653	900	.370	-1.881	.705	
[prog_1exp_2dev_3clin=1 .00]	-2.000	2.625	762	.448	-7.196	3.196	
[prog_1exp_2dev_3clin=2 .00]	-5.750	2.135	-2.693	.008	-9.976	-1.524	
[prog_1exp_2dev_3clin=3 .00]	0 ^a			-	-	.	
[jobint1qnt_2rsh=1.00]	10.745	2.385	4.505	.000	6.025	15.466	
[jobint1 qnt_2rsh=2.00]	0 ^a						
[prac1e2s=1.00]	-20.481	3.122	-6.560	.000	-26.660	-14.302	
[prac1e2s=2.00]	0 a						
[prac1e2s=1.00] * [jobint1qnt_2rsh=1.00]	10.808	3.566	3.031	.003	3.750	17.866	
[prac1e2s=1.00] * [jobint1qnt_2rsh=2.00]	0 ^a						
[prac1e2s=2.00] * [jobint1qnt_2rsh=1.00]	0 ^a				-		
[prac1e2s=2.00] * [jobint1qnt_2rsh=2.00]	0 ^a	-	-	-	-		
prac_mcen * motv_mcen	.017	.034	.510	.611	050	.084	
motv_mcen * prac_mcquad	.003	.013	.241	.810	023	.029	
prac_mcen * motv_mcquad	005	.002	-2.448	.016	010	001	
prac_mcquad * motv_mcquad	.001	.001	1.081	.282	001	.002	
[prac1e2s=1.00] * prac_mcen	-4.859	.832	-5.840	.000	-6.505	-3.212	
[prac1e2s=2.00] * prac_mcen	0 ^a			-	-		
[prac1e2s=1.00] * prac_mcquad	159	.331	481	.631	814	.496	
[prac1e2s=2.00] * prac_mcquad	0 ^a	·					

a. This parameter is set to zero because it is redundant.

a. R Squared = .752 (Adjusted R Squared = .719)

One advantage of using GLM is that it give more complete information about the categorical variables than does he multiple regression, especially for interaction patterns. Plus, GLM will allow you to get plots of the cell means representing the interactions of categorical variables.

Covariates appearing in the model are evaluated at the following values: prac_mcen = .0000, pristat_mcen = .0000, motv_mcen = .0000, prac_mcquad = 4.9739, pristat_mcquad = 1.0789, motv_mcquad = 145.5135

1. jobint1qnt_2rsh * prac1e2s

Estimates

Dependent Variable: testperf

jobint1 qnt_2rsh	prac1e2s	Mean	Std. Error
1.00	1.00	76.286ª	1.924
	2.00	86.751 ^a	1.523
2.00	1.00	54.733 ^a	2.052
	2.00	76.006 ^a	1.918

a. Covariates appearing in the model are evaluated at the following values: prac_mcen = .0000, pristat_mcen = .0000, motv_mcen = .0000, prac_mcquad = 4.9739, pristat_mcquad = 1.0789, motv_mcquad = 145.5135.

Pairwise Comparisons

Dependent Variable: testperf

Dependent variat	ne. teatheir				
jobint1 qnt_2rsh	(I) prac1e2s	(J) prac1e2s	Mean Difference (I- J)	Std. Error	Sig. ^b
1.00	1.00	2.00	-10.465	2.498	.000
	2.00	1.00	10.465	2.498	.000
2.00	1.00	2.00	-21.273 [*]	2.844	.000
	2 00	1 00	21 273	2 844	000

Based on estimated marginal means

- *. The mean difference is significant at the .050 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

The plot and the pairwise comparisons both show that people consistently performed better when using the similar difficulty practices than the easier practices, and this smaller for those with a quantitative interest than those with a research interest.

Notice that those with a research interest who used the similar difficulty practices performed similarly to those with a quantitative interest who used the easier practices!

Pairwise comparisons also provide useful information about hos those in different programs differed.

There were no interactions with program, so these are "descriptive" results!

2. prog_1exp_2dev_3clin

Estimates

Dependent Variable: testperf

prog_1exp_2dev_3clin	Mean	Std. Error
1.00	74.027 ^a	1.960
2.00	70.278 ^a	1.399
3.00	76.028 ^a	1.595

a. Covariates appearing in the model are evaluated at the following values: prac_mcen = .0000, pristat_mcen = .0000, motv_mcen = .0000, prac_mcquad = 4.9739, pristat_mcquad = 1.0789, motv_mcquad = 145.5135.

Pairwise Comparisons

Dependent Variable: testperf

		Mean Difference (l-		,
(I) prog_1exp_2dev_3clin	(J) prog_1exp_2dev_3clin	J)	Std. Error	Sig. ^b
1.00	2.00	3.750	2.404	.121
	3.00	-2.000	2.625	.448
2.00	1.00	-3.750	2.404	.121
	3.00	-5.750 [*]	2.135	.008
3.00	1.00	2.000	2.625	.448
	2.00	5.750	2.135	.008

Based on estimated marginal means

- *. The mean difference is significant at the .050 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).