Plotting Linear Main Effects Models

- Interpreting $1^{\text {st }}$ order terms $\mathrm{w} / \& \mathrm{w} / \mathrm{o}$ interactions
- Coding \& centering... gotta? oughta?
- Plotting single-predictor models - Q, 2 \& k
- Plotting 2-predictor models - 2xQ, kxQ \& QxQ

Coding \& Transforming predictors for MR models

- Categorical predictors will be converted to dummy codes
- Quantitative predictors will be centered, usually to the mean

Is this absolutely necessary?
Not usually... Many sources, and nearly all older ones, used unitcoded \& un-centered predictors and their multiplicative combinations. Much of the time it works just fine...

So, why is dummy-coding and centering a good idea?
Mathematically - Os (as control group \& mean) simplify the math
\& minimize collinearity complications
Interpretively - the "controlling for" included in multiple regression weight interpretations is really "controlling for all other variables in the model at the value 0 "

- "0" as the comparison group \& mean will make b interpretations simpler and more meaningful

Very important things to remember...
All $1^{\text {st }}$ order predictor regression weights have the same interpretation...
The expected direction and extent of change in Y for a 1-unit increase in the X after controlling for the other variable(s) in the model at the value 0
If that $1^{\text {st }}$ order predictor is not involved in a higher-order effect (interaction), then the regression weight is interpreted as a main or unconditional effect - not being part of an interaction, the effect of that variable is the same for all values of all other variables.
If that $1^{\text {st }}$ order predictor is involved in a higher-order effect, then the regression weight is interpreted as a conditional effect when the other variable(s) involved in the interaction $=0-$ being part of an interaction, the effect is different for different values of those other variable(s) \& the interaction weight describes the direction and extent of those differences

Plotting Single-Predictor models

Let's start by getting, interpreting and plotting a model with each of the different kinds of predictor we will be working with..

Be sure to "get" how each regression weight represents a particular slope, height or height differences in the plot!!!

Models with a single quantitative predictor

$$
y^{\prime}=b X+a
$$

$a \rightarrow$ regression constant

- expected value of y if $x=0$
- height of predictor-criterion y-x regression line
$\mathrm{b} \rightarrow$ regression weight
- expected direction and extent of change in y for a 1-unit increase in x
- slope of y-x regression line

Models with a single centered quantitative predictor

$$
\begin{aligned}
& X_{\text {cen }}=X-X_{\text {mean }} \\
& \mathrm{y}^{\prime}=\mathrm{bX} \mathrm{cen}+\mathrm{a}
\end{aligned}
$$

$a \rightarrow$ regression constant

- expected value of y when $x=0 \quad$ (re-centered to mean=0)
- height of y-x regression line
b \rightarrow regression weight
- expected direction and extent of change in y for a 1-unit increase in x
- slope of y-x regression line

X will be $X_{\text {cen }}$ in all of the following models

Models with a single centered quantitative predictor

$$
X_{\text {cen }}=X-X_{\text {mean }}
$$

$$
y^{\prime}=b X_{\text {cen }}+a
$$

So, how do we plot this formula?
Simple \rightarrow pick 2 values of $x_{\text {cen }}$, substitute them into the formula to get y ' values and plot the line defined by those two $x-y$ points

What x values?

- doesn't matter -- so keep it simple...
$\cdot 0 \& 1,0 \& 10,0 \& 100$, depending on the x-scale
- +/- 2 std isn't as simple, but tells you what $x \& y$ ranges are needed on the plot

Couple of things to remember...

- " 0 " is the center of the x -axis - X has been centered !!!
- the x-axis should extend about $+/-2$ Std (include 96% of pop)

Graphing \& Interpreting
Models with a single centered quantitative predictor

$$
\begin{aligned}
& x_{\text {cen }}=X-X_{\text {mean }} \\
& y^{\prime}=b X_{\text {cen }}+a
\end{aligned}
$$

Graphing \& Interpreting

Models with a single centered quantitative predictor

$$
\begin{aligned}
& X_{\text {cen }}=X-X_{\text {mean }} \\
& \mathrm{y}^{\prime}=-\mathrm{b} \mathrm{X}_{\mathrm{cen}}+\mathrm{a}
\end{aligned}
$$

Graphing \& Interpreting

Models with a single centered quantitative predictor

$$
\begin{aligned}
& X_{\text {cen }}=X-X_{\text {mean }} \\
& y^{\prime}=b X_{\text {cen }}+a
\end{aligned}
$$

Plotting \& Interpreting models with a single binary predictor coded 1-2

$$
\begin{aligned}
& y^{\prime}=b Z+a \\
& z=T x 1 \text { vs. Cx }
\end{aligned}
$$

$$
C x=1 \quad T x 1=2
$$

Plotting \& Interpreting
Models with a single dummy coded binary predictor

$$
y^{\prime}=b z+a
$$

$Z=T x 1$ vs. $C x \quad C x=0 \quad T x=1$

Models with a single dummy coded binary predictor

$$
y^{\prime}=b Z+a
$$

$\mathrm{a} \rightarrow$ regression constant

- expected value of y if $z=0$ (the control group)
- mean of the control group
- height of control group
b \rightarrow regression weight
- expected direction and extent of change in y for a 1-unit increase in x
- direction and extent of y mean difference between groups coded 0 \& 1
- group height difference

The way we're going to graph this model looks strange, but will provide simplicity \& clarity for more complex models.

Plotting \& Interpreting
Models with a single dummy coded binary predictor

$$
y^{\prime}=b z+a
$$

$Z=T x 1$ vs. Cx
$C x=0 \quad T x=1$

Models with a single k-category predictor coded 1-3

Can't put the 1-3 coded variable into a regression - not a quant/interval variable

Models with a dummy coded k-category predictor - 2 dummy codes

$$
y^{\prime}=b_{1} z_{1}+b_{2} z_{2}+a
$$

Group	Z_{1}	Z_{2}
1	1	0
2	0	1
3^{\star}	0	0

$a \rightarrow$ regression constant

- expected value of y if $Z 1 \& Z 2=0$ (the control group)
- mean of the control group
- height of control group
$\mathrm{b}_{1} \rightarrow$ regression weight related to group 1 vs. target group
- expected direction and extent of change in y for a 1-unit increase in x
- direction and extent of y mean difference between comparison group and target group coded 1 on this variable
- group height difference between comparison \& target groups (3 \& 1)
$\mathrm{b}_{2} \rightarrow$ regression weight related to group 2 vs. target group
- expected direction and extent of change in y for a 1-unit increase in x
- direction and extent of y mean difference between comparison group and target group coded 1 on this variable
- group height difference between comparison \& target groups (3 \& 2)

Again, the way we're gọing to graph this model looks strange, but will provide simplicity \& clarity for more complex models.

Plotting \& Interpreting
Models with a dummy coded k-category predictor - 2 dummy codes

$$
\mathrm{y}^{\prime}=\mathrm{b}_{1} \mathrm{z}_{1}+\mathrm{b}_{2} \mathrm{z}_{2}+\mathrm{a}
$$

$$
Z_{1}=T x 1 \text { vs. } C x(0) \quad Z_{2}=T x 2 \text { vs. } C x(0)
$$

Plotting \& Interpreting
Models with a dummy coded k-category predictor - 2 dummy codes

$$
y^{\prime}=b_{1} z_{1}+b_{2} z_{2}+a
$$

$$
Z_{1}=T x 1 \text { vs. } C x(0) \quad Z_{2}=T x 2 \text { vs. } C x(0)
$$

Plotting \& Interpreting
Models with a dummy coded k-category predictor - 2 dummy codes

$$
\begin{gathered}
y^{\prime}=-b_{1} Z_{1}+b_{2} Z_{2}+a \\
Z_{1}=T \times 1 \text { vs. } C \times(0) \quad Z_{2}=T \times 2 \text { vs. } C \times(0)
\end{gathered}
$$

Plotting 2-Predictor Linear Main Effects Models

Now we get to the fun part - plotting multiple regression equations involving multiple variables.

Three kinds (for now, more later) ...

- centered quant variable \& dummy-coded binary variable
- centered quant variable \& dummy-coded k-category variable
- 2 centered quant variables

What we're trying to do is to plot these models so that we can see how both of the predictors are related to the criterion.

Like when we're plotting data from a factorial design, we have to represent 3 variables -- the criterion \& the 2 predictors X \& Z -- in a 2-dimensional plot. We'll use the same solution..

We'll plot the relationship between one predictor and the criterion for different values of the other predictor

Models with a centered quantitative predictor

\& a dummy coded binary predictor

$$
y^{\prime}=b_{1} x+b_{2} z+a
$$

$\mathrm{a} \rightarrow$ regression constant
This is called a main effects model \rightarrow there are no interaction terms.

- expected value of y if $X=0$ (mean) and $Z=0$ (comparison group)
- mean of the control group
- height of control group quant-criterion regression line
$\mathrm{b}_{1} \rightarrow$ regression weight for centered quant predictor - main effect of X
- expected direction and extent of change in y for a 1-unit increase in x, after controlling for the other variable(s) in the model
- expected direction and extent of change in y for a 1-unit increase in x, for the comparison group (coded 0)
- slope of quant-criterion regression line for the group coded 0 (comp)
$b_{2} \rightarrow$ regression weight for dummy coded binary predictor - main effect of Z
- expected direction and extent of change in y for a 1-unit increase in x, after controlling for the other variable(s) in the model
- direction and extent of y mean difference between groups coded 0 \& 1 , after controlling for the other variable(s) in the model
- group mean/reg line height difference (when $X=0$, the centered mean)

To plot the model we need to get separate regression formulas for each Z group. We start with the multiple regression model...

$$
\text { Model } \rightarrow \quad y^{\prime}=b_{1} X+b_{2} z+a
$$

For the Comparison Group coded $Z=0$

For the Target Group coded $Z=1$

Substitute the 1 in for Z
Simplify the formula

Plotting \& Interpreting Models
with a centered quantitative predictor \& a dummy coded binary predictor

$$
y^{\prime}=-b_{1} x+-b_{2} z+a \quad \begin{aligned}
& \text { This is called a main effects } \\
& \text { model In interaction the the } \\
& \text { regression lines are parallel. }
\end{aligned}
$$

$X_{\text {cen }}=X-X_{\text {mean }} \quad Z=T x(1)$ vs. $C x(0)$

Plotting \& Interpreting Models

 with a centered quantitative predictor \& a dummy coded binary predictor> This is called a main effects model \rightarrow no interaction \rightarrow th. regression lines are parallel.

Models with a centered quantitative predictor \& a dummy coded k-category predictor

This is called a main effects model \rightarrow there are no interaction terms.

$$
y^{\prime}=b_{1} x+b_{2} z_{1}+b_{3} z_{2}+a
$$

$\mathrm{a} \rightarrow$ regression constant

- expected value of y if $Z_{1} \& Z_{2}=0$ (the control group)

Group	Z_{1}	Z_{2}
1	1	0
2	0	1
3^{*}	0	0

- mean of the control group
- height of control group quant-criterion regression line
$\mathrm{b}_{1} \rightarrow$ regression weight for centered quant predictor - main effect of X - expected direction and extent of change in y for a 1-unit increase in x
- slope of quant-criterion regression line (for both groups)
$\mathrm{b}_{2} \rightarrow$ regression weight for dummy coded comparison of G1 vs G3 - main effect
- expected direction and extent of change in y for a 1 -unit increase in x
- direction and extent of y mean difference between groups 1 \& 3
- group height difference between comparison \& target groups (3 \& 1) (X = 0)
$\mathrm{b}_{3} \rightarrow$ regression weight for dummy coded comparison of G2 vs. G3 - main effect
- expected direction and extent of change in y for a 1-unit increase in x
- direction and extent of y mean difference between groups coded 0 \& 1
- group height difference between comparison \& target groups (3 \& 2) ($\mathrm{X}=0$)

To plot the model we need to get separate regression formulas for each Z group. We start with the multiple regression model...

| Model $\rightarrow y^{\prime}=b_{1} X+b_{2} Z_{1}+b_{3} z_{2}+a$ | Group | z_{1} | z_{2} |
| :---: | :---: | :---: | :---: | :---: |
| | 1 | 1 | 0 |
| | 3^{\star} | 0 | 1 |
| | 0 | 0 | |

For the Comparison Group coded $Z_{1}=0 \& Z_{2}=0$
Substitute the Z code values $\quad y^{\prime}=b 1 X+b_{2}{ }^{*} 0+b_{3}{ }^{*} 0+a$
Simplify the formula
$y^{\prime}=b_{1} X+a$
$\backslash_{\text {slope }}$ height
For the Target Group coded $Z_{1}=1 \& Z_{2}=0$
Substitute the Z code values $\quad y^{\prime}=b 1 X+b_{2}{ }^{*} 1+b_{3}{ }^{*} 0+a$
Simplify the formula

For the Target Group coded $Z_{1}=0$ \& $Z_{2}=1$

Substitute the Z code values Simplify the formula
$y^{\prime}=b_{1} x+\left(b_{2}+a\right)$
$y^{\prime}=b 1 X+b_{2}{ }^{*} 0+b_{3}{ }^{*} 1+a$
$y^{\prime}=b_{1} x+\underbrace{\left(b_{3}+a\right)}_{\text {slope }}$

Plotting \& Interpreting Models
with a centered quantitative predictor \& a dummy coded k-category predictor

$$
y^{\prime}=b_{1} x+-b_{2} z_{1}+b_{3} z_{2}+a
$$

This is called a main effects model \rightarrow no interaction \rightarrow the regression lines are parallel.

Plotting \& Interpreting Models

$$
X_{\text {cen }}=X-X_{\text {mean }} \quad Z_{1}=T x 1 \text { vs. } C x(0) \quad Z_{2}=T x 2 \text { vs. } C x(0)
$$

$\mathrm{b}_{1}=$ slp of Cx line
$\mathrm{Cx} \operatorname{sip}=\mathrm{T} \mathrm{x}_{1} \mathrm{slp}=\mathrm{Tx} \mathrm{Z}_{\mathrm{s}} \mathrm{sp}$ No interaction
$\mathrm{b}_{2}=$ htdif $\mathrm{Cx} \& \mathrm{Tx}_{1}$ $\rightarrow \mathrm{Cx} \& \mathrm{Tx}_{1}$ mean dif
$\mathrm{b}_{3}=$ htdif $\mathrm{Cx} \& \mathrm{Tx}_{2}$ $\rightarrow \mathrm{Cx} \& \mathrm{Tx}_{2}$ mean dif

Plotting \& Interpreting Models

with a centered quantitative predictor \& a dummy coded k-category predictor
This is called a main effects regression in interaction \rightarrow the

$$
y^{\prime}=-b_{1} x+b_{2} z_{1}+b_{3} z_{2}+a
$$

regression lines are parallel.
$X_{\text {cen }}=X-X_{\text {mean }} \quad Z_{1}=T x 1$ vs. $C x(0) \quad Z_{2}=T x 2$ vs. $C x(0)$
with a centered quantitative predictor \& a dummy coded k-category predictor

This is called a main effects model \rightarrow no interaction \rightarrow the regression lines are parallel.

$$
X_{\text {cen }}=X-X_{\text {mean }} \quad Z_{1}=T x 1 \text { vs. } C x(0) \quad Z_{2}=T x 2 \text { vs. } C x(0)
$$

weights for main effects models w/ a centered quantitative predictor $\boldsymbol{\&}$ a dummy coded binary predictor Or a dummy coded k-category predictor

Constant "a"

- the expected value of y when the value of all predictors $=0$
- height of the $Y-X$ regression line for the comparison group

b for a centered quantitative variable - main effect

the direction and extent of the expected change in the value of y for a 1-unit increase in that predictor, holding the value of all other predictors constant at 0

- slope of the $\mathrm{Y}-\mathrm{X}$ regression line for the comparison group
b for a dummy coded binary variable -- main effect
the direction and extent of expected mean difference of the Target group from the Comparison group, holding the value of all other predictors constant at 0
- difference in height of the $Y-X$ regression lines for the comparison \& target groups
- comparison \& target groups Y - X regression lines have same slope - no interaction

b for a dummy coded k-group variable - main effect

-the direction and extent of the expected mean difference of the Target group for that dummy code from the Comparison group, holding the value of all other predictors constant at 0

- difference in height of the $Y-X$ regression lines for the comparison \& target groups
- comparison \& target groups $\mathrm{Y}-\mathrm{X}$ regression lines have same slope - no interaction \mathcal{L}

Models with 2 centered quantitative predictors

This is called a main

$$
y^{\prime}=b_{1} x_{1}+b_{2} x_{2}+a
$$ no interaction terms.

Same idea ...

- we want to plot these models so that we can see how both of the predictors are related to the criterion

Different approach ...

- when the second predictor was binary or had k-categories, we plotted the Y - X regression line for each Z group
- now, however, we don't have any groups - both the X \& Z variables are centered quantitative variables
- what we'll do is to plot the $\mathrm{Y}-\mathrm{X}_{1}$ regression line for different values of X_{2}
- the most common approach is to plot the $\mathrm{Y}-\mathrm{X}$ regression line for...
- the mean of X_{2}
- +1 std above the mean of X_{2}
- -1 std below the mean of X_{2}

We'll plot 3 lines

To plot the model we need to get separate regression formulas for each chosen value of Z. Start with the multiple regression model..

$$
\text { Model } \rightarrow \mathrm{y}^{\prime}=\mathrm{b}_{1} \mathrm{X}+\mathrm{b}_{2} \mathrm{X}_{1}+\mathrm{a}
$$

For $X_{2}=0$ (the mean of centered Z)

Substitute the 0 in for X_{2}
Simplify the formula
For $X_{2}=+1$ std
Substitute the std value in for X_{2}
Simplify the formula

For $X_{2}=-1$ std
Substitute the std value in for X_{2}
Simplify the formula

$$
\begin{aligned}
& \mathrm{y}^{\prime}=\mathrm{b}_{1} \mathrm{x}+\mathrm{b}_{2}^{*} 0+\mathrm{a} \\
& \mathrm{y}^{\prime}=\mathrm{b}_{1} \mathrm{x}+\mathrm{a} \\
& \text { Slope height }
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime} & =b_{1} x+-b_{2}{ }^{*} s t d+a \\
y^{\prime} & =b_{1} x+(\underbrace{\left.-b_{2}^{*} s t d+a\right)}
\end{aligned}
$$

Plotting \& Interpreting Models with 2 centered quantitative predictors

$$
\begin{aligned}
& y^{\prime}=b_{1} X_{1 \text { cen }}+b_{2} x_{2 \text { cen }}+a \\
& X_{1 \text { cen }}=X_{1}-X_{1 \text { mean }} \quad X_{2 \text { cen }}=X_{2}-X_{2 \text { mean }}
\end{aligned}
$$

This is called a main effects model \rightarrow no interaction \rightarrow the regression lines are parallel.

\circ

Plotting \& Interpreting Models with 2 centered quantitative predictors

$$
y^{\prime}=b_{1} x_{1 \text { cen }}+b_{2} x_{2 \text { cen }}+a \quad \left\lvert\, \begin{aligned}
& \text { This is called a main effects } \\
& \text { model } \rightarrow \text { no interaction } \rightarrow \text { th } \\
& \text { regression lines are parallel. }
\end{aligned}\right.
$$

$$
X_{1 \text { cen }}=X_{1}-X_{1 \text { mean }} \quad X_{2 \text { cen }}=X_{2}-X_{2 \text { mean }}
$$

Plotting \& Interpreting Models
with 2 centered quantitative predictors

$$
\begin{aligned}
& \text { This is called a main effects } \\
& \text { model } \rightarrow \text { no interaction } \rightarrow \text { the }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{y}^{\prime} & =\mathrm{b}_{1} \mathrm{X}_{1 \text { cen }}+\mathrm{b}_{2} \mathrm{X}_{2 \text { cen }}+\mathrm{a} \\
\mathrm{X}_{1 \text { cen }} & =\mathrm{X}_{1}-\mathrm{X}_{1 \text { mean }} \quad \mathrm{X}_{2 \text { cen }}=\mathrm{X}_{2}-\mathrm{X}_{2 \text { mean }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { model } \rightarrow \text { no interaction } \rightarrow \text { the } \\
& \text { reqression lines are parallel. }
\end{aligned}
$$

