Plotting Non-linear \& Complex Main Effects Models

- Plotting single-predictor non-linear models
- Plotting 2-predictor non-linear models - 2xQ, kxQ \& QxQ
- Plotting complex non-linear main effects models

Models with a single centered quantitative predictor

$$
\begin{gathered}
X_{\text {cen }}=X-X_{\text {mean }} \\
y^{\prime}=b X_{\text {cen }}+a
\end{gathered}
$$

$a \rightarrow$ regression constant

- expected value of y when $x=0 \quad$ (re-centered to mean=0)
- height of y-x regression line
$b \rightarrow$ regression weight
- expected direction and extent of change in y for a 1-unit increase in x
- slope of $y-x$ regression line

[^0]\[

$$
\begin{gathered}
X_{\text {cen }}=X-X_{\text {mean }} \quad X_{\text {cen }}{ }^{2}=\left(X-X_{\text {mean }}\right)^{2} \\
y^{\prime}=b_{1} X_{\text {cen }}+b_{2} X_{\text {cen }}{ }^{2+} a
\end{gathered}
$$
\]

$$
\begin{gathered}
X_{\text {cen }}=X-X_{\text {mean }} \quad X_{\text {cen }}{ }^{2}=\left(X-X_{\text {mean }}\right)^{2} \\
y^{\prime}=b_{1} X_{\text {cen }}+b_{2} X_{c e n}{ }^{2+} a
\end{gathered}
$$

$\mathrm{a}=\mathrm{ht}$ of line
$b_{1}=$ slp of line at $X=0$
$b_{2}=$ curve of line

Plotting 2-Predictor Non-linear Models

Now we get to the funer part - plotting multiple regression equations involving multiple variables.

Three kinds (for now, more later) ...

- centered quant variable \& dummy-coded binary variable
- centered quant variable \& dummy-coded k-category variable
- 2 centered quant variables

What we're trying to do is to plot these models so that we can see how both of the predictors are related to the criterion.

Like when we're plotting data from a factorial design, we have to represent 3 variables -- the criterion \& the 2 predictors X \& Z -- in a 2 -dimensional plot. We'll use the same solution..

We'll plot the relationship between one predictor and the criterion for different values of the other predictor

Non-linear Models with a centered quantitative predictor
\& a dummy coded binary predictor

$$
y^{\prime}=b_{1} x+b_{2} x^{2}+b_{3} Z+a
$$

This is called a main effects model \rightarrow there are no interaction terms.
$\mathrm{a} \rightarrow$ regression constant

- expected value of y if $X=0$ (mean) and $Z=0$ (comparison group)
- mean of the control group
- height of control group quant-criterion regression line
$b_{1} \rightarrow$ regression weight for centered quant predictor - linear main effect of X
- expected direction and extent of change in y for a 1 -unit increase in x, after controlling for the other variable(s) in the model
- expected direction and extent of change in y for a 1 -unit increase in x , for the comparison group (coded 0)
- slope of quant-criterion regression line for the group coded 0 (comp)

Non-linear Models with a centered quantitative predictor
\& a dummy coded binary predictor

$$
y^{\prime}=b_{1} X+b_{2} X^{2}+b_{3} Z+a
$$

This is called a main effects model \rightarrow there are no interaction terms.
$\mathrm{b}_{2} \rightarrow$ weight for centered \& squared quant predictor - non-linear main effect of X

- expected direction and extent of change in y-x slope for a 1-unit increase in x after controlling for the other variable(s) in the model
- expected direction and extent of change in $y-x$ slope for a 1-unit increase in x for the comparison group (coded 0)
- curve of quant-criterion regression line for the group coded 0 (comp)
$b_{3} \rightarrow$ regression weight for dummy coded binary predictor - main effect of Z
- expected direction and extent of change in y for a 1-unit increase in x, after controlling for the other variable(s) in the model
- direction and extent of y mean difference between groups coded $0 \& 1$, after controlling for the other variable(s) in the model
- group mean/reg line height difference (when $X=0$, the centered mean)

To plot the model we need to get separate regression formulas for each Z group. We start with the multiple regression model...

$$
\text { Model } \rightarrow \quad y^{\prime}=b_{1} X+b_{2} X^{2}+b_{3} Z+a
$$

For the Comparison Group coded $Z=0$

Substitute the 0 in for Z
Simplify the formula
$y^{\prime}=b_{1} \mathrm{X}+\mathrm{b}_{2} \mathrm{x}^{2}+\mathrm{b}_{3} 0+\mathrm{a}$
$\mathrm{y}^{\prime}=\mathrm{b}_{1} \mathrm{x}+\mathrm{b}_{2} \mathrm{x}^{2}+\mathrm{a}$

For the Target Group coded $Z=1$

Substitute the 1 in for Z
Simplify the formula

Plotting \& Interpreting Non-linear Models
with a centered quantitative predictor \& a dummy coded binary predictor

$$
y^{\prime}=b_{1} X+b_{2} X^{2}+b_{3} Z+a
$$

This is called a main effects model \rightarrow no interaction \rightarrow the regression lines are parallel.

$$
a=h t \text { of } C x \text { line }
$$ \rightarrow mean of Cx

$\mathrm{b}_{1}=$ slp of Cx line
Cx slp = Tx slp
No interaction
$\mathrm{b}_{2}=$ curve of $C x$ line
Cx curv = Tx curv
No interaction
$\mathrm{b}_{3}=$ htdif $\mathrm{Cx} \& \mathrm{Tx}$ \rightarrow Cx \& Tx mean dif

Plotting \& Interpreting Non-linear Models with a centered quantitative predictor \& a dummy coded binary predictor

$$
y^{\prime}=b_{1} x+b_{2} x^{2}+b_{3} Z+a \quad \begin{aligned}
& \text { This is called a main effects } \\
& \text { model } \rightarrow \text { no interaction } \rightarrow \text { the } \\
& \text { regression lines are parallel. }
\end{aligned}
$$

$$
X_{\text {cen }}=X-X_{\text {mean }} \quad X_{\text {cen }}^{2}=\left(X-X_{\text {mean }}\right)^{2} \quad Z=T x(1) \text { vs. } C x(0)
$$

Plotting \& Interpreting Non-linear Models with a centered quantitative predictor \& a dummy coded binary predictor

$$
y^{\prime}=b_{1} X+b_{2} X^{2}+b_{3} Z+a
$$

This is called a main effects model \rightarrow no interaction \rightarrow th regression lines are parallel.

$\mathrm{a}=\mathrm{ht}$ of Cx line

\rightarrow mean of Cx
$b_{1}=\operatorname{slp}$ of Cx line
Cx slp = Tx slp
No interaction
$b_{2}=$ curve of $C x$ line Cx curv = Tx curv No interaction
$\mathrm{b}_{3}=$ htdif $\mathrm{Cx} \& \mathrm{Tx}$ \rightarrow Cx \& Tx mean dif
-20
-10
0
10
$20 \leftarrow X_{\text {cen }}$

Non-linear models with a centered quantitative predictor \& a dummy coded k-category predictor

$$
y^{\prime}=b_{1} X+b_{2} X^{2}+b_{3} Z_{1}+b_{4} Z_{2}+a
$$

This is called a main effects model \rightarrow there are no interaction terms.
$a \rightarrow$ regression constant

- expected value of y if $Z_{1} \& Z_{2}=0$ (the control group)
- mean of the control group
- height of control group quant-criterion regression line

Group	Z_{1}	Z_{2}
1	1	0
2	0	1
3^{*}	0	0

$b_{1} \rightarrow$ regression weight for centered quant predictor - main effect of X

- expected direction and extent of change in y for a 1 -unit increase in x
- slope of quant-criterion regression line (for both groups)
$\mathrm{b}_{2} \rightarrow$ weight for centered \& squared quant predictor - non-linear main effect of X
- expected direction and extent of change in y - x slope for a 1-unit increase in x, after controlling for the other variable(s) in the model
- expected direction and extent of change in y - x slope for a 1 -unit increase in x , for the comparison group (coded 0)
- curve of quant-criterion regression line for the group coded 0 (comp)

Non-linear models with a centered quantitative predictor \& a dummy coded k-category predictor
$y^{\prime}=b_{1} X+b_{2} X^{2}+b_{3} Z_{1}+b_{4} Z_{2}+a$
This is called a main effects model \rightarrow there are no interaction terms.

Group	Z_{1}	Z_{2}
1	1	0
2	0	1
3^{*}	0	0

$\mathrm{b}_{3} \rightarrow$ regression weight for dummy coded comparison of G1 vs G3 - main effect - expected direction and extent of change in y for a 1 -unit increase in x

- direction and extent of y mean difference between groups 1 \& 3
- group height difference between comparison \& target groups (3 \& 1) $(X=0)$
$\mathrm{b}_{4} \rightarrow$ regression weight for dummy coded comparison of G2 vs. G3 - main effect - expected direction and extent of change in y for a 1 -unit increase in x
direction and extent of y mean difference between groups coded 0 \& 1
- group height difference between comparison \& target groups (3 \& 2) ($\mathrm{X}=0$)

To plot the model we need to get separate regression formulas for each Z group. We start with the multiple regression model...

Group	Z_{1}	Z_{2}
1	1	0
2	0	1
3^{\star}	0	0

For the Comparison Group - coded $Z_{1}=0 \& Z_{2}=0$
Substitute the Z code values $\quad y^{\prime}=b_{1} X+b_{2} X^{2}+b_{2}{ }^{*} 0+b_{3}{ }^{*} 0+a$
Simplify the formula

$$
\begin{aligned}
& \mathrm{y}^{\prime}=\mathrm{b}_{1} \mathrm{X}+\mathrm{b}_{2} \mathrm{X}^{2}+\mathrm{a} \\
& \text { slope } \nearrow
\end{aligned}
$$

For the Target Group $1-\operatorname{coded} Z_{1}=1 \& Z_{2}=0$
Substitute the Z code values $\quad y^{\prime}=b 1 X+b_{2} X^{2}+b_{2}{ }^{*} 1+b_{3}{ }^{*} 0+a$
Simplify the formula
$y^{\prime}=b_{1} X+b_{2} X^{2}+\left(b_{2}+a\right)$
slope \nearrow curve
For the Target Group 2- coded $Z_{1}=0 \& Z_{2}=1$
Substitute the Z code values
Simplify the formula

$$
y^{\prime}=b 1 X+b_{2} X^{2}+b_{2}^{*} 0+b_{3}^{*} 1+a
$$

$$
y^{\prime}=b_{1} x+b_{2} x^{2}+\left(b_{3}+a\right)
$$

$$
\text { slope } \nearrow \text { curve }
$$

Plotting \& Interpreting Non-linear Models
with a centered quantitative predictor \& a dummy coded k-category predictor

> This is called a main effects model $\rightarrow \rightarrow$ no interaction \rightarrow the regression lines are parallel.

$$
Z_{1}=T x 1 \text { vs. } C x(0)
$$

$$
X_{\text {cen }}=X-X_{\text {mean }} \quad Z_{2}=T \times 2 \text { vs. } C x(0)
$$

$a=h t$ of $C x$ line
\rightarrow mean of Cx
$\mathrm{b}_{1}=$ slp of Cx line
Cx slp = Tx1 slp = Tx1 slp No interaction
$\mathrm{b}_{2}=$ curve of Cx line
Cx crv = Tx1 crv = Tx1 crv No interaction
$\mathrm{b}_{2}=$ htdif Cx \& Tx ${ }_{1}$
$\rightarrow \mathrm{Cx} \& \mathrm{Tx}_{1}$ mean dif
$\mathrm{b}_{3}=$ htdif $\mathrm{Cx} \& \mathrm{Tx}_{2}$
$\rightarrow \mathrm{Cx} \& \mathrm{Tx}_{2}$ mean dif

Plotting \& Interpreting Non-linear Models
with a centered quantitative predictor \& a dummy coded k-category predictor

$$
\begin{aligned}
& \text { This is called a main effects } \\
& \text { model } \rightarrow \text { no interaction } \rightarrow \text { the } \\
& \text { regression lines are parallel. }
\end{aligned}
$$

with a centered quantitative predictor \& a dummy coded k-category predictor

weights for non-linear main effects models w/ centered quantitative predictor $\boldsymbol{\&}$ a dummy coded binary predictor Or a dummy coded k -category predictor

Constant "a"

- the expected value of y when the value of all predictors $=0$
- height of the $\mathrm{Y}-\mathrm{X}$ regression line for the comparison group

b for a centered quantitative variable - main effect

- the direction and extent of the expected change in the value of y for a 1-unit increase
in that predictor, holding the value of all other predictors constant at 0
- slope of the Y - X regression line for the comparison group

b for a centered \& squared quantitative variable - main effect

- the direction and extent of the expected change in the y-x for a 1-unit increase in x, holding the value of all other predictors constant at 0
curve of the $\mathrm{Y}-\mathrm{X}$ regression line for the comparison group
b for a dummy coded binary variable -- main effect
- the direction and extent of expected mean difference of the Target group from the Comparison group, holding the value of all other predictors constant at 0
difference in height of the Y-X regression lines for the comparison \& target groups - comparison \& target groups Y-X regression lines have same slope - no interaction

b for a dummy coded k-group variable - main effect

- direction and extent of expected mean difference of Target group for that dummy code from Comparison group holding the value of all other predictors constant at 0
- difference in height of the Y-X regression lines for the comparison \& target groups

Non-linear models with 2 centered quantitative predictors

$$
y^{\prime}=b_{1} x_{1}+b_{2} x_{1}^{2}+b_{3} x_{2}+b_{4} x_{2}^{2}+a
$$

This is called a main effects model \rightarrow there are no interaction terms.

Same idea ...

- we want to plot these models so that we can see how both of the predictors are related to the criterion

Different approach ...

- when the second predictor was binary or had k-categories, we plotted the $\mathrm{Y}-\mathrm{X}$ regression line for each Z group
- now, however, we don't have any groups - both the $X_{1} \& X_{2}$ variables are centered quantitative variables
- what we'll do is to plot the $\mathrm{Y}-\mathrm{X}_{1}$ regression line for different values of X_{2}
- the most common approach is to plot the $\mathrm{Y}-\mathrm{X}_{1}$ regression line for...
- the mean of X_{2}
-+1 std above the mean of X_{2}
- -1 std below the mean of X_{2}

We'll plot 3 lines

Non-linear Models with 2 centered quantitative predictors

$$
y^{\prime}=b_{1} x_{1}+b_{2} x_{1}^{2}+b_{3} x_{2}+b_{4} x_{2}^{2}+a
$$

This is called a main effects model \rightarrow there are no interaction terms.
$a \rightarrow$ regression constan

- expected value of y if $X_{1}=0$ (mean) $X_{2}=0$ (mean)
- mean criterion score of those having $X_{1}=0$ (mean) $X_{2}=0$ (mean)
- height of quant-criterion regression line for those with $\mathrm{X}_{2}=0$ (mean)
$\mathrm{b}_{1} \rightarrow$ regression weight for X_{1} centered quant predictor
- expected direction and extent of change in y for a 1 -unit increase in X_{1}, after controlling for the other variable(s) in the model
- expected direction and extent of change in y for a 1-unit increase in X_{2}, for those with $X_{2}=0$ (mean)
- slope of quant-criterion regression line when $X_{2}=0$ (mean)
$\mathrm{b}_{2} \rightarrow$ weight for centered \& squared quant predictor - non-linear main effect of X_{1}
- expected direction and extent of change in y-x slope for a 1-unit increase in X_{1}, after controlling for the other variable(s) in the model
- expected direction and extent of change in y - x slope for a 1-unit increase in X_{1}, for those with $\mathrm{X}_{2}=0$ (mean)
- curve of quant-criterion regression line when $X_{2}=0$ (mean)

Non-linear Models with 2 centered quantitative predictors

$$
y^{\prime}=b_{1} x_{1}+b_{2} x_{1}^{2}+b_{3} x_{2}+b_{4} x_{2}^{2}+a
$$

This is called a main effects model \rightarrow there are no interaction terms.

To plot the model we need to get separate regression formulas for each chosen value of Z. Start with the multiple regression model..

$$
y^{\prime}=b_{1} x_{1}+b_{2} x_{1}^{2}+b_{3} x_{2}+b_{4} x_{2}^{2}+a
$$

For $X_{2}=0$ (the mean of centered X_{2})
Substitute the 0 in for $X_{2} \quad y^{\prime}=b_{1} X_{1}+b_{2} X_{1}{ }^{2}+b_{3} 0+b_{4} 0+a$
Simplify the formula

For $\mathrm{X}_{2}=+1$ std $\underset{\text { slope }}{ }{ }_{\text {curve }}{ }_{\text {height }}$
Substitute the std for $X_{2} y^{\prime}=b_{1} X+b_{2} X_{1}{ }^{2}+b_{2}{ }^{*} s t d+b_{4} s t d^{2}+a$
Simplify the formula

For $X_{2}=-1$ std
Substitute the std for $X_{2} y^{\prime}=b_{1} X+b_{2} X_{1}{ }^{2}-b_{2}{ }^{*} s t d-b_{4} s t d^{2}+a$
Simplify the formula $\underset{\text { slope }}{y^{\prime}}=b_{1} X+b_{2} X_{1}{ }^{2}+(\underbrace{-b_{2}{ }^{*} s t d-b_{4} s t d^{2}+a})$

-1std mean 1std X1

50		X 1
40		
30	\circ	1 std
20		
10	\circ	mean
0		-1 std

Plotting \& Interpreting Non-linear Models with 2 centered quantitative predictors

Plotting \& Interpreting Non-linear Models with 2 centered quantitative predictors
$y^{\prime}=b_{1} X_{1 c e n}+b_{2} X_{1}^{2}{ }_{\text {cen }}+b_{3} X_{2 \text { cen }}+b_{4} X_{2}^{2}{ }_{\text {cen }}+a$

This is called a main effects model \rightarrow no interaction \rightarrow the regression lines are parallel.

$$
a=\text { ht of } X_{2 \text { mean }} \text { line }
$$

$$
\mathrm{b}_{1}=\operatorname{slp} \text { of } \mathrm{X}_{2 \text { mean }} \text { line }
$$

0 slp $=+1$ std slp $=-1$ std slp No interaction
$b_{2}=$ curve of $X_{2}=$ mean line
0 crv $=+1$ crv slp $=-1$ crv slp
No interaction
$b_{3}=$ linear htdifs among

X_{2}-lines

Lin ht dif same all X_{1} values
No interaction
$\mathrm{b}_{4}=$ quad htdifs among
quad ht dif same all X_{1} values No interaction

Plotting Complex Linear Main Effects Models

Sometimes we have a model with more than 2 predictors, and sometimes we want to plot these more complex models.

There is only so much that can be put into a single plot and reasonably hope the reader will be able to understand it.

Remember, with main effects models (with no interactions), all lines are parallel!!!!

So, our plots are a series of lines, each for a different combination of variable groups/values.

The most common version of these plots is to show how 2 variables relate to the criterion, for a given set of values for the other variables (usually their mean)

Here's an example!

So, we have this model...

$$
\text { perf' }=b_{1} \text { age }+b_{2} \operatorname{mar} 1+b_{3} \operatorname{mar} 2+b_{4} \mathrm{era}+\mathrm{b}_{5} \exp +\mathrm{a}
$$

- age \& exp(erience) are centered quantitative variables
- era is dummy coded $0=1980 s 1=2010 s$
- mar(ital status) is dummy coded

$$
\text { mar1 } \text { single }=1 \quad \text { mar2 divorced }=1 \quad \text { married }=0
$$

To plot this we have to decide what we want to show, say...
How are experience \& marital status related to performance for 25-year-olds from 2010s?

What we do is fill in the values of the "selection variables" and simplify the formula to end up with a plotting function for each regression line...

For this plot:

- performance (the criterion) is on the Y axis
- experience (a quantitative predictor) is on the X axis
- we'll have 3 regression lines, one each for single, married \& divorced

How are experience \& marital status related to perf for 25-year-olds from 2010s?

$$
\begin{aligned}
\text { perf' }=b_{1} \text { age } & +b_{2} \text { mar } 1+b_{3} \text { mar } 2+b_{4} e r a+b_{5} \exp +a \\
& \cdot \text { era } 0=1980 s 1=2010 s \\
& \cdot \text { mar mar1 single }=1 \quad \text { mar2 divorced }=1 \quad \text { married }=0
\end{aligned}
$$

$$
\text { For married } \rightarrow \quad \text { perf' }=b_{1}{ }^{*} 25+b_{2}{ }^{*} 0+b_{3}{ }^{*} 0+b_{4}{ }^{*} 1+b_{5} \exp +a
$$

we plot

$$
\text { perf' }=b_{5} \exp +\underbrace{b_{4}{ }^{*} 1+b_{1}{ }^{*} 25+a}_{\text {slope }}) \text { height }
$$

For singles \rightarrow perf' $=b_{1}{ }^{*} 25+b_{2}{ }^{*} 1+b_{3}{ }^{*} 0+b_{4}{ }^{*} 1+b_{5} \exp +a$
we plot perf' $^{\prime}=b_{5} \underbrace{}_{\text {slope }} \underbrace{b_{2}+b_{4}{ }^{*} 1+b_{1}{ }^{*} 25+a})$ height

For divorced \rightarrow perf' $=b_{1}{ }^{*} 25+b_{2}{ }^{*} 0+b_{3}{ }^{*} 1+b_{4}{ }^{*} 1+b_{5} \exp +a$
we plot

$$
\mathrm{perf}^{\prime}=\mathrm{b}_{5} \exp +\left(\mathrm{b}_{3}+\mathrm{b}_{4}{ }^{*} 1+\mathrm{b}_{1}{ }^{*} 25+\mathrm{a}\right)
$$

\qquad height

How are experience \& marital status related to perf for 25-year-olds from 2010s?

$$
\begin{aligned}
\text { perf' }=b_{1} \text { age } & +b_{2} \operatorname{mar} 1+b_{3} \operatorname{mar} 2+b_{4} \text { era }+b_{5} \exp +a \\
& \cdot \text { era } 0=1980 \text { s } 1=2010 s \\
& \cdot \text { mar mar1 single }=1 \quad \text { mar2 divorced }=1 \quad \text { married }=0
\end{aligned}
$$

Let's look at the plotting formulas again
For married $\rightarrow \quad$ perf ${ }^{\prime}=b_{5} \exp +\left(b_{4}{ }^{*} 1+b_{1}{ }^{*} 25+a\right)$

For singles \rightarrow perf' $=b_{5} \exp +\left(b_{2}+b_{4}{ }^{*} 1+b_{1}{ }^{*} 25+a\right)$

For divorced \rightarrow perf' $=b_{5} \exp +\left(b_{3}+b_{4}{ }^{*} 1+b_{1}{ }^{*} 25+a\right)$

Notice that each group's regression line has the same slope $\left(b_{5}\right)$, because there is no interaction.

The difference between the group's regression lines are their height which differ based on the relationship between marital status and perf !!!

How are experience \& marital status related to perf for 25-year-olds from 2010s?

$$
\text { Jerf' }=b_{1} 25+b_{2} \operatorname{mar} 1+b_{3} \operatorname{mar} 2+b_{4} 2010 s+b_{5} \exp +a
$$

The selection of the value of Age $\left(b_{1}\right)$ \& Era $\left(b_{4}\right)$ determine the height of the set of lines!

Plotting Complex Non-Linear Main Effects Models

Sometimes we have a non-linear model with more than 2 predictors, and sometimes we want to plot these more complex models.

There is only so much that can be put into a single plot and reasonably hope the reader will be able to understand it.

Remember, with main effects models (with no interactions), all lines are parallel!!!!

So, our plots are a series of lines, each for a different combination of variable groups/values.

The most common version of these plots is to show how 2 variables relate to the criterion, for a given set of values for the other variables (usually their mean)

Here's an example!

So, we have this model..
perf' $=b_{1}$ age $+b_{2}$ mar1 $+b_{3} m a r 2+b_{4}$ era $+b_{5} \exp +a$

- age \& exp(erience) are centered quantitative variables
- era is dummy coded $0=1980$ s $1=2010$ s
- mar(ital status) is dummy coded

$$
\text { mar1 single }=1 \quad \text { mar2 divorced }=1 \quad \text { married }=0
$$

To plot this we have to decide what we want to show, say...
How are experience \& marital status related to performance for 25 -year-olds from 1980s?

All we do is fill in the values of the "selection variables" and simplify the formula to end up with a plotting function for each regression line...

For this plot:

- performance (the criterion) is on the Y axis
- experience (a quantitative predictor) is on the X axis
- we'll have 3 regression lines, one each for single, married \& divorced

How are experience \& marital status related to perf for 25 -year-olds from 2010s?

$$
\text { perf' }=b_{1} \text { age }+b_{2} a \text { age }^{2}+b_{3} \text { mar1 }+b_{4} \text { mar2 }+b_{5} \text { era }+b_{6} \exp +b_{7} \exp ^{2}+a
$$

$$
\begin{array}{lll}
\text { - era } & 0=1980 \text { s } 1=2010 \text { s } \\
- \text { mar } & \text { mar1 } \text { single }=1 \quad \text { mar2 divorced }=1 \quad \text { married }=0
\end{array}
$$

For married $\rightarrow \quad$ perf' $=b_{1} 25+b_{2} 25^{2}+b_{3} 0+b_{4} 0+b_{5} 1+b_{6} \exp +b_{7} \exp ^{2}+a$
we plot

For singles \rightarrow perf' $=b_{1} 25+b_{2} 25^{2}+b_{3} 1+b_{4} 0+b_{5} 1+b_{6} \exp +b_{7} \exp ^{2}+a$ we plot perf' $=b_{6} \exp +b_{7} \exp ^{2}+\left(b_{3}+b_{5}{ }^{*} 1+b_{1}{ }^{*} 25+b_{2} 25^{2}+a\right)$

For divorced \rightarrow perf' $=b_{1} 25+b_{7} 25^{2}+b_{3} 0+b_{4} 1+b_{5} 1+b_{6} \exp +b_{7} \exp ^{2}+a$ we plot

How are experience \& marital status related to perf for 25 -year-olds from 2010s?
perf' $=b_{1}$ age $+b_{2}$ age $^{2}+b_{3}$ mar1 $+b_{4} m a r 2+b_{5}$ era $+b_{6} \exp +b_{7}$ exp $^{2}+a$

```
- era coded \(0=1980\) s \(1=2010\) s
- mar mar1 single \(=1\) mar2 divorced \(=1\) married \(=0\)
```


Let's look at the plotting formulas again

For married \rightarrow perf' $=b_{6} \exp +b_{7} \exp ^{2}+\left(b_{5}{ }^{*} 1+b_{1}{ }^{*} 25+b_{2} 25^{2}+a\right)$
For singles \rightarrow perf' $=b_{6} \exp +b_{7} \exp ^{2}+\left(b_{3}+b_{5}{ }^{*} 1+b_{1}{ }^{*} 25+b_{2} 25^{2}+a\right)$
For divorced \rightarrow perf' $=b_{6} \exp +b_{7} \exp ^{2}+\left(b_{4}+b_{5}{ }^{*} 1+b_{1}{ }^{*} 25+b_{2} 25^{2}+a\right)$
Notice that each group's regression line has the same slope $\left(b_{6}\right)$, because there is no interaction.

Notice that each group's regression line has the same curve $\left(b_{7}\right)$, because there is no interaction.
The difference between the group's regression lines are their height which differ based on the relationship between marital status and perf !!!

[^0]: X will be $X_{\text {cen }}$ in all of the following models

