Non-linear Components for Multiple Regression

- Why we might need non-linear components
- Type of non-linear components
- Squared-term components \& their disadvantages
- Centered-squared-term components \& their advantages
- Quadratic terms, interactions \& regression weights

Non-linear Components

Although linear regression models do a very good job of capturing or approximating most of the relationships between quantitative variables that psychologists study, there are several notable exceptions.

- Study of skills acquisition or other accrual tasks often show ...
- initial learning is slow in earlier trials but then speeds up (a) ...
- learning rates seem to reach a point of diminishing returns (b)
- or both (c) ...
- depending upon the novelty of the learning task and the number of trials examined
a

b

C

The most common way of including a quadratic term into a linear regression model is to

- construct a new variable - a "squared term" that is the square of the original variable $X \rightarrow X^{2}$
- include the squared term in the model
- determine if the term "adds" to the model
- t-test of "b" or F-test of R2-change
-+b means a U-shaped quadratic component
- -b means an inverted-U-shaped quadratic component

For example, if we wanted to test for a non-linear relationship between practice and performance...
compute practsq = pract * pract
dep $=$ perform $/$ enter pract paractsq

However, this common method is not doing quite what we had in mind ..

The practsq term really combines the linear and the quadratic trends into a single term
-a "quadratic only" trend will have the same
DV values at each end of the predictor
continuum, with a hump in between

- however, squaring makes initially larger
numbers "more larger" than initially smaller numbers ($2 * 2=4 \quad 5 * 5=25$)
- so, the squaring process alone will give you a "curved" shape (linear + quadratic), but won't give you a "humped" or "pure quadratic" shape

There are two consequences of working with this "combined" term instead of a "quadratic only" term...

- the bivariate analysis using this constructed variable won't be testing what you had intended (a problem similar to using a single dummy or effect code from a k-group coding in a simple correlation)
- the multivariate analysis will have increased collinearity because both the linear and the "quadratic" term have a linear component
- though this also informs us that in the multiple regression, the b for the quadratic term will be "controlled for" the linear term, and so will provide a test of the "pure" quadratic trend

Is there a way to get a "pure" quadratic term ???
Sure there is...

- first center the predictor (subtract the mean of the predictor from each person's score) $\mathrm{X} \rightarrow(\mathrm{X}-\mathrm{M})$
- square this centered score $(X-M)^{2}$

How does that work ???

- Consider two persons with scores equally far above and below the mean (mean $=10, \mathrm{p} 1=8 \mathrm{p} 2=12$)
- After centering, they are equally far from the mean, but with opposite signs ($\mathrm{p} 1=-2 \mathrm{p} 2=2$)
- When the centered scores are squared, they are now equally far from the mean \& iin the same direction ($\mathrm{p} 1=\mathrm{p} 2=4$)
- If there is a "pure" quadratic term, these squared centered scores are now linearly related to the criterion

But wait - there's more!!!

How do we interpret the quadratic term regression weight?

Some background....

To answer that, you have to realize that a quadratic term is "a
kind of interaction" - HUH??

- the quadratic term tells how the slope of the linear $y-x$ relationship changes as x changes. So, it is a conditional statement... So, it is an interaction!
- +b indicates that the $y-x$ linear slope is getting more positive as x increases
- -b indicates that the y - x linear slope is getting less positive (more negative) as x increases

Squared centered scores show a
linear trend with criterion

Centered scores show th same trend w/ criterion

2

Thus, a quadratic trend between the criterion and the predictor is revealed as a linear trend between the centered \& squared predictor and the criterion.
Not sure that makes sense???
Take a look at these data...
O

There is a definite +linear trend! On average, more practice is better! (a main effect)

However, there is also a quadratic trend! How much the next practice will help depends on how much practices you've already done. (an interaction)

10 practices will help someone who has done 0 practices MORE THAN 10 practices will help someone who has already done 20 !

So, how do we interpret the quadratic term regression weight?
Well, there's a bit of a problem, which can be expressed 2 ways:
First, there's no way to fix the linear term and allow the quadratic term to vary! Said differently, if X changes X^{2} changes...

Second, since it is a kind of interaction term, the change in Y for a 1-unit change in X depends on the starting value of X !!!

Here's an example...
We're going to start with a model that has no linear trend, but a quadratic trend (making it easier to track the quadratic!)

```
Y' = 0*(X-M) + 2*(X-M)}\mp@subsup{}{}{2}+1
```

So, how do we interpret the quadratic term regression weight?


```
For X=0 -> X=1
Y'\Delta 10.00 }->12.00\mathrm{ which is the quadratic coefficient =2
For X=1 ->X=2
Y'\Delta 12.00 }->18.00\quad6\mathrm{ ?????
```

```
Y' = 0*(X-M) + 2* (X-M) }\mp@subsup{}{}{*}+1
```

We're going to think about it as an interaction term..
In what direction \& by how much does the slope of the $\mathrm{Y}-\mathrm{X}$ regression line as X increases by 1 ???
b-linear tells Y-X
slope when $X=0$
b-quad tells how $\mathrm{Y}-\mathrm{X}$ slope
changes as X changes

- As X increases, the Y-X slope becomes more positive
- As X decreases, the Y-X
 slope becomes less positive

