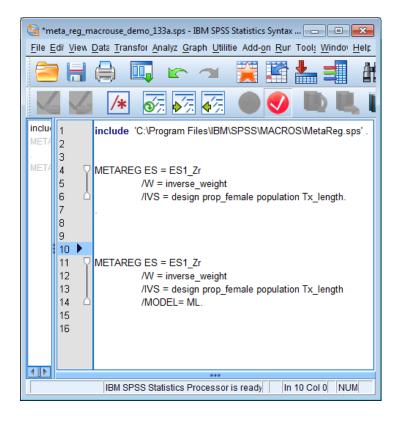
Using Wilson's SPSS Macro to Compute Meta Regression

David Wilson has provided SPSS Macros (and other goodies) at: <u>http://mason.gmu.edu/~dwilsonb/ma.html</u>. The "Demo of Wilson SPSS Macro for mean ES" tells you how to download and install the macro.

What's a macro and what do you do with it? A macro is just a pre-written bit of SPSS syntax that you use much like you use other SPSS commands and programs. There is an extra step or two, but compared to having to program the material yourself....


Your data set for this analysis will need to include the effect size values and coded variables that describe differences among the studies.

The ES values: Be sure to use the final ready-to-analyze ES values – with whatever transformations, adjustments, outlier analysis, etc that you intend. The macro uses these exact ES values.

The inverse weighting values: These should be the weights for a fixed effects model. The macro will use these for computing the fixed effect model and the macro will modify these for use in the random effect model.

One or more study attribute variables: These can be quantitative, binary, coded categorical, interactions – anything that you think captures differences among the studies that could account for ES differences!!!

ta *demo_data_133a.sav [DataSet2] - IBM SPSS Statistics Data Editor											
<u>F</u> ile <u>I</u>	<u>File Edit View Data Transform Analyze Graphs Utilities Add-ons Window H</u> elp										
😑 H 🖨 🗔 🗠 🤉 🖹 📥 📰 🕪 🖬 🚟 🔛 📲 🐴 🖽 🖓 📎 🍆											
		ES1_Zr	samplesize	inverse_weight	design	prop_female	population	Tx_length			
1		.25	106	103	0	.52	0	12.00			
2		.29	104	101	0	.65	0	12.00			
3		.46	110	107	0	.62	0	16.00			
4		.11	65	62	0	.61	0	11.00			
5		.29	90	87	0	.38	0	10.00			
-			70	70				7.00			

- ← the Include statement initializes the macro
- ← Fixed Effect analysis
 - ➔ ES tells effect size variable
 - → W tells the inverse weighting variable
 - → IVS tells the analysis variables
- ← Random Effect analysis
 - → ES tells effect size variable
 - → W tells the inverse weighting variable
 - ➔ IVS tells the analysis variables
 - MODEL tells which model to use MM - is method-of-moments ML - is full-information ML
 DEMI - restricted information ML
 - REML restricted-information ML

*****	Inverse	Variance	Weighted	Regression	*****

***** Fixed Effects Model via OLS *****

De	escriptive	s						← overall mean effect size & NHST
Mean	n ES – R	-Square		k				
.2	2667	.4094	70.0	0000				
Нс	omogeneity	-		-				Significant Model - indicates
		Q	df		р			ES is related to variables
Model	58.37	31	4.0000	.0000				 Significant within-groups variance -
Residual	esidual 84.2006 65.0000		.05	.0549			would indicate there may be more	
Total	142.57	737 69.0000 .0000				. variables related to ES		
Re	egression	Coeffici	ients					
	В	SE	-95% CI	+95% CI	Z	P	Beta	
Constant	.2577	.0708	.1190	.3964	3.6416	.0003	.0000	E Clarger for design 1 then design
design	.1016	.0253	.0519	.1513	4.0104	.0001	.3492	← ES larger for design=1 than design=
prop fem	3374	.0825	4991	1758	-4.0907	.0000	3464	ES larger for fewer females in sample
populati	.0417	.0257	0087	.0921	1.6207	.1051	.1437	← 2 populations have same effect size
Tx lengt	.0132	.0038		.0208	3.4535	.0006	.2977	← ES larger for longer effects
	MATRIX -							after controlling for other variables in the meta analytic model.

Fixed Effect Model results

Run MATRIX	X procedure	e:				Random Effect Model results		
Version 20	005.05.23							
	nverse Var:		-	-				
Real Real	andom Inte:	rcept, r	ixed Slop	bes Model				
De	escriptive	s						• overall mean effect size & NHST
Mean	n ES R	-Square		k				
	2666	.4089	70.0	0000				Significant Model - indicates
								ES is related to variables
Но	omogeneity	-		-				
		Q	df		р			 Significant within-groups variance -
Model Residual	45.89	03		.00				would indicate there may be more
	112.21			.43				 variables related to ES
IUCAI	112.21	50	09.0000	.00	100			
Re	egression (Coeffici	lents					
	В		-95% CI		Z	P	Beta	
Constant	.2591	.0795	.1033	.4148	3.2603	.0011	.0000	ES larger for design=1 than design=0
design	.1025	.0284	.0468	.1583	3.6071	.0003	.3539	ES larger for fewer females in sample
	3367							2 populations have same effect size
	.0402							← ES larger for longer effects
Tx_lengt	.0131	.0043	.0047	.0216	3.0485	.0023	.2961	e e
		1.1	D					after controlling for other variables in
Ma ▼ =	aximum Lik .00259	elinood	Random EI	rects var	ciance Comp	onent		the meta analytic model.
se(v) =	.00215							
52(*) -	.00213							← estimate of the systematic variation
ENI	D MATRIX -							. across studies

Most sources recommend completing and presenting both the Fixed and Random effect models.

Be sure you know which approaches/interpretations are "standard" for your research area & audience!