Parametric \& Nonparametric Models for Tests of Association

- Models we will consider
- X^{2} Tests for qualitative variables
- Parametric tests
- Pearson's correlation
- Nonparametric tests
- Spearman's rank order correlation (Rho)
- Kendal's Tau

Statistics We Will Consider

DV	Categorical	Parametric Interval/ND	Nonparametric Ordinal/~ND
univariate stats	mode, \#cats	mean, std	median, IQR
univariate tests	gof X^{2}	1-grp t-test	1-grp Mdn test
association	X^{2}	Pearson's r	Spearman's r
2 bg	X^{2}	t- / F-test	M-W K-W Mdn
k bg	X^{2}	F-test	K-W Mdn
2wg	McNem Crn's	t- / F-test	Wil's Fried's
kwg	Crn's	F-test	Fried's

M-W -- Mann-Whitney U-Test Wil's -- Wilcoxin's Test Fried's -- Friedman's F-test K-W -- Kruskal-Wallis Test
Mdn -- Median Test McNem -- McNemar's X ${ }^{2}$ Crn's - Cochran's Test

Statistical Tests of Association w/ qualitative variables

Pearson's X^{2}

$$
X^{2}=\sum \frac{(\mathrm{of}-\mathrm{e} \boldsymbol{f})^{2}}{\mathrm{ef}}
$$

Can be $2 \times 2,2 x k$ or $k x k$ - depending upon the number of categories of each qualitative variable

- H0: There is no pattern of relationship between the two qualitative variables.
- degrees of freedom df = (\#colums - 1) * (\#rows - 1)
- Range of values 0 to ∞
- Reject Ho: If $X^{2}{ }_{\text {obtained }}>X^{2}{ }_{\text {critical }}$

Col 1 Col 2

The expected frequency for each cell is computed assuming that the H 0 : is true - that there is no relationship between the row and column variables

If so, the frequency of each cell can be computed from the frequency of the associated rows \& columns.

$\begin{array}{lll}68 & 86 & 154\end{array}$
$X^{2}=\sum \frac{(\mathrm{of}-\mathrm{ef})^{2}}{\mathrm{ef}}$

$$
\mathrm{df}=(2-1) *(2-1)=1
$$

$\mathrm{X}^{2}{ }_{1, .05}=3.84$
$X^{2}{ }_{1, .01}=6.63$
$p=.0002$ using online p-value calculator

So, we would reject HO : and conclude that there is a pattern of relationship between the variables.

Parametric tests of Association using ND/Int variables

Pearson's correlation

- HO : No linear relationship between the variables, in the population represented by the sample.
- degrees of freedom $\mathrm{df}=\mathrm{N}-2$
- range of values -1.00 to 1.00
- reject Ho: If $\left|r_{\text {obtained }}\right|>r_{\text {critical }}$

Pearson's correlation is an index of the direction and extent of the linear relationship between the variables.

It is important to separate the statements...

- there is no linear relationship between the variables
- there is no relationship between the variables
- correlation only addresses the former!

Correlation can not differentiate between the two bivariate distributions shown below - both have no linear relationship

One of many formulas for r is shown on the right.

$$
r=\frac{\sum Z_{X}{ }^{*} Z_{Y}}{N}
$$

$$
\text { person } \mathrm{C} \text {-scores }(\mathrm{M}=0 \text { \& Std=1). }
$$

$\cdot r$ is calculated as the average Z-score cross product.
$+r$ results when most of the cross products are positive (both $\mathrm{Zs}+$ or both Zs -)
$-r$ results when most of the cross products are negative (one $Z+\&$ other Z-)

Spearman's Correlation

- H0: No rank order relationship between the variables, in the population represented by the sample.
- degrees of freedom df = N-2
- range of values - 1.00 to 1.00
- reject Ho: If $\left|r_{\text {obtained }}\right|>r_{\text {critical }}$

Computing Spearman's r

One way to compute Spearman's correlation is to convert X \& Z values to ranks, and then correlate the ranks using Pearson's correlation formula, applying it to the ranked data. This demonstrates...

- rank data are "better behaved" (i.e., more interval \& more ND) than value data
- Spearman's looks at whether or not there is a linear relationship between the ranks of the two variables

The most common formula for Spearman's Rho is shown on the right.

To apply the formula, first convert values to ranks.

	\# practices	\# correct	rank \# practices	rank \# correct	d	d^{2}
S1	6	21	4	5	-1	1
S2	2	18	1	4	-3	9
S3	4	7	2	1	1	1
S4	9	15	5	3	2	1
S5	5	10	3	2	1	1
$r=1-\frac{6 * 13}{5 * 24}=1-.65=.35$						

For small samples $(n<20) r$ is compared to r-critical from tables.
For larger samples, r is transformed into t for NHSTesting.
Remember to express results in terms of the direction and extent of rank order relationship !

So, how does this strange-looking
formula work? Especially the " 6 " ???
Remember that we're working with "rank order agreement" across variable - a much simpler

$$
r=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}
$$

thing than "linear relationship" because there are
a finite number of rank order pairings possible!
If there is complete rank order agreement between the variables ...
\rightarrow then, $\mathrm{d}=0$ for each case $\& \Sigma \mathrm{~d}^{2}=0$
\rightarrow so, $r=1-0$
$\rightarrow r=1 \rightarrow$ indicating a perfect rank-order correlation
If the rank order of the two variables is exactly reversed...
$\rightarrow \Sigma \mathrm{d}^{2}$ can be shown to be $\mathrm{n}\left(\mathrm{n}^{2}-1\right) / 3$
\rightarrow the equation numerator becomes $6 * n\left(n^{2}-1\right) / 3=2 * n\left(n^{2}-1\right)$
\rightarrow so, $\mathrm{r}=1-2$
$\rightarrow \mathrm{r}=-1 \rightarrow$ indicating a perfect reverse rank order correlation
If there is no rank order agreement of the two variables ...
$\rightarrow \Sigma \mathrm{d}^{2}$ can be shown to be $\mathrm{n}\left(\mathrm{n}^{2}-1\right) / 6$
\rightarrow the equation numerator becomes $6 * n\left(n^{2}-1\right) / 6=n\left(n^{2}-1\right)$
\rightarrow so, $\mathrm{r}=1-1$
$\rightarrow \mathrm{r}=0 \rightarrow$ indicating no rank order correlation

Nonparametric tests of Association using ~ND/~Int variables

Kendall's Tau

-HO: No rank order concordance between the variables, in the population represented by the sample.

- degrees of freedom $d f=N-2$
- range of values -1.00 to 1.00
- reject Ho: If | robtained | > rcritical

All three correlations have the same mathematical range $(-1,1)$.
But each has an importantly different interpretation.
Pearson's correlation

- direction and extent of the linear relationship between the variables

Spearman's correlation

- direction and extent of the rank order relationship between the variables
Kendall's tau
- direction and proportion of concordant \& discordant pairs

The most common formula for Kendall's Tau is shown on the right.**

The most common form is shown on the right.**					$\operatorname{tau}=\frac{2(C-D)}{n(n-1)}$
	\# practices	\# correct	$\begin{gathered} \text { rank } \\ \# \text { practices } \\ \times \end{gathered}$	$\begin{gathered} \text { rank } \\ \text { \# correct } \\ \mathrm{Y} \end{gathered}$	
S1	6	21	4	5	
S2	2	18	1	4	To apply the
S3	4	7	2	1	formula, first
S4	9	15	5	3	convert values
S5	5	10	3	2	to ranks.
	\# practices	\# correct	$\begin{gathered} \text { rank } \\ \text { \# practices } \\ \times \end{gathered}$	$\begin{gathered} \text { rank } \\ \text { \# correct } \\ \mathrm{Y} \end{gathered}$	
S2	2	18	1	4	Then, reorder the
S3	4	7	2	1	cases so they are in
S5	5	10	3	2	rank order for X .
S1	6	21	4	5	
S4	9	15	5	3	

[^0]

For each case...
$C=$ the number of cases listed below it that have a larger Y rank (e.g., for $\mathrm{S} 2, \mathrm{C}=1 \rightarrow$ there is one case below it with a higher rank -S 1)
$D=$ the number of cases listed below it that have a smaller Y rank (e.g., for $\mathrm{S} 2, \mathrm{D}=3 \rightarrow$ there are 3 cases below it with a lower rank - S3 S5 S4)
$\operatorname{tau}=\frac{2(C-D)}{n(n-1)}$

$$
=\frac{2(6-4)}{5(5-1)}=\frac{4}{20}
$$

$$
=.20
$$

For small samples ($\mathrm{n}<20$) tau is compared to tau-critical from tables. For larger samples, tau is transformed into Z for NHSTesting.

[^0]: **There are other forumlas for tau that are used when there are tied ranks.

