Ν

Statistics We Will Consider

Parametric & Nonparametric	DV +	Categorical	Parametric Interval/ND	Nonparametric Ordinal/~ND		
Models for Tests of Association	univariate stats	mode, #cats	mean, std	median, IQR		
	univariate tests	gof X ²	1-grp t-test	1-grp Mdn test		
	association	X ²	Pearson's r	Spearman's r		
 Models we will consider X² Tests for qualitative variables 	2 bg	X ²	t- / F-test	M-W K-W Mdn		
 Parametric tests Pearson's correlation 	k bg	X ²	F-test	K-W Mdn		
Nonparametric tests	2wg	McNem Crn's	t- / F-test	Wil's Fried's		
 Spearman's rank order correlation (Rho) Kendal's Tau 	kwg	Crn's	F-test	Fried's		
	M-W Mann-Whitney U-Test Wil's Wilcoxin's Test Fried's Friedman's F-test K-W Kruskal-Wallis Test Mdn Median Test McNem McNemar's X ² Crn's – Cochran's Test					

Statistical Tests of Association w/ qualitative variables

Pearson's X²

$$X^2 = \sum \frac{(\mathbf{o} \mathbf{f} - \mathbf{e} \mathbf{f})^2}{\mathbf{e} \mathbf{f}}$$

Can be 2x2, 2xk or kxk – depending upon the number of categories of each qualitative variable

- H0: There is no pattern of relationship between the two qualitative variables.
- degrees of freedom df = (#colums 1) * (#rows 1)
- Range of values 0 to ∞
- Reject Ho: If $X^2_{obtained} > X^2_{critical}$

It is important to separate the statements...

- · there is no linear relationship between the variables
- there is no relationship between the variables
- · correlation only addresses the former!

Correlation can not differentiate between the two bivariate distributions shown below – both have no linear relationship

Z-scores (M=0 & Std=1).

• r is calculated as the average Z-score cross product.

+r results when most of the cross products are positive (both Zs + or both Zs -)

-r results when most of the cross products are negative (one Z + & other Z-)

The most common formula for Spearman's Rho is shown on the right.

 $r = 1 - \frac{6 \Sigma a^2}{n(n^2 - 1)}$

O

To apply the formula, first convert values to ranks.

	# practices	# correct	rank # practices	rank # correct	d	d²
S1	6	21	4	5	-1	1
S2	2	18	1	4	-3	9
S3	4	7	2	1	1	1
S4	9	15	5	3	2	1
S5	5	10	3	2	1	1
6 * 13					Σd ² = 13	
$r = 1 - \frac{1}{5 \cdot 24} = 165 = .35$						

For small samples (n < 20) r is compared to r-critical from tables. For larger samples, r is transformed into t for NHST esting.

Remember to express results in terms of the direction and extent of rank order relationship !

Nonparametric tests of Association using ~ND/~Int variables

Spearman's Correlation

- H0: No rank order relationship between the variables, in the population represented by the sample.
- degrees of freedom df = N 2
- range of values 1.00 to 1.00
- reject Ho: If $| r_{obtained} | > r_{critical}$

Computing Spearman's r

One way to compute Spearman's correlation is to convert X & Z values to ranks, and then correlate the ranks using Pearson's correlation formula, applying it to the ranked data. This demonstrates...

• rank data are "better behaved" (i.e., more interval & more ND) than value data

• Spearman's looks at whether or not there is a linear relationship between the ranks of the two variables

So, how does this strange-looking formula work? Especially the "6" ???

Remember that we're working with "rank order agreement" across variable – a much simpler thing than "linear relationship" because there are a finite number of rank order pairings possible! $r = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$

If there is complete rank order agreement between the variables ... \rightarrow then, d = 0 for each case & $\Sigma d^2 = 0$ \rightarrow so, r = 1-0 \rightarrow r = 1 \rightarrow indicating a perfect rank-order correlation

If the rank order of the two variables is exactly reversed...

 $\rightarrow \Sigma d^2$ can be shown to be n(n²-1)/3

 \rightarrow so, r = 1 – 1

S4

9

→ the equation numerator becomes $6 * n(n^2 - 1)/3 = 2 * n(n^2 - 1)$ → so, r = 1 - 2 → r = -1 → indicating a perfect reverse rank order correlation

If there is no rank order agreement of the two variables ...

→ Σd^2 can be shown to be $n(n^2-1)/6$ → the equation numerator becomes 6 * $n(n^2 - 1)/6 = n(n^2 - 1)$

 \rightarrow r = 0 \rightarrow indicating no rank order correlation

Ö

2(C-D)

Nonparametric tests of Association using ~ND/~Int variables

Kendall's Tau

- •H0: No rank order concordance between the variables, in the population represented by the sample.
- degrees of freedom df = N 2
- range of values 1.00 to 1.00
- reject Ho: If | robtained | > rcritical

All three correlations have the same mathematical range (-1, 1).

But each has an importantly different interpretation.

Pearson's correlation

• direction and extent of the linear relationship between the variables Spearman's correlation

- direction and extent of the rank order relationship between the variables
- Kendall's tau
 - · direction and proportion of concordant & discordant pairs

The most common formula for Kendall's Tau is shown on the right.**

15

15 511	own on the rig	i it.			tau = $\frac{\sqrt{1-r}}{r}$
	# practices	# correct	rank # practices	rank # correct	n(n -1)
S1 S2 S3 S4 S5	6 2 4 9 5	21 18 7 15 10	A 1 2 5 3	5 4 1 3 2	To apply the formula, first convert values to ranks.
	# practices	# correct	rank # practices X	rank # correct Y	
S2	2	18	1	4	Then, reorder the
S3	4	7	2	1	cases so they are in
S5	5	10	3	2	rank order for X.
S1	6	21	4	5	

**There are other forumlas for tau that are used when there are tied ranks.

5

3

	# practices ` X	# correct Y	rank # practices X	rank # correct Y	С	D
S2	2	18	1	4	1	3
S3	4	7	2	1	3	0
S5	5	10	3	2	2	0
S1	6	21	4	5	0	1
S4	9	15	5	3		
					sum 6	4
For each case						
C = the number of cases listed below it that have a larger Y rank						
(e.g., for S2, C=1 \rightarrow there is one case below it with a higher rank $$ - S1)						
D = the number of cases listed below it that have a smaller Y rank						

(e.g., for S2, D=3 \rightarrow there are 3 cases below it with a lower rank - S3 S5 S4)

tau =
$$\frac{2(C-D)}{n(n-1)}$$
 = $\frac{2(6-4)}{5(5-1)}$ = $\frac{4}{20}$ = .20

For small samples (n < 20) tau is compared to tau-critical from tables. For larger samples, tau is transformed into Z for NHSTesting.