Univariate Parametric \& Nonparametric Statistics \& Statistical Tests

- Kinds of variables \& why we care
- Univariate stats
- qualitative variables
- parametric stats for ND/Int variables
- nonparametric stats for $\sim \mathrm{ND} / \sim \operatorname{lnt}$ variables
- Univariate statistical tests
- tests qualitative variables
- parametric tests for ND/Int variables
- nonparametric tests for $\sim N D / \sim \operatorname{lnt}$ variables
- of normal distribution shape for quantitative variables

Kinds of variable \rightarrow The "classics" \& some others ..

Labels

- aka \rightarrow identifiers
- values may be alphabetic, numeric or symbolic
- different data values represent unique vs. duplicate cases, trials, or events
-e.g., UNL ID\#

Nominal

- aka \rightarrow categorical, qualitative
- values may be alphabetic, numeric or symbolic
- different data values represent different "kinds"
- e.g., species

Ordinal

- aka \rightarrow rank order data, ordered, seriated data
- values may be alphabetic or numeric
- different data values represent different "amounts"
- only "trust" the ordinal information in the value
- don't "trust" the spacing or relative difference information
- has no meaningful " 0 "
- don't "trust" ratio or proportional information
- e.g., 10 best cities to live in
- has ordinal info $\rightarrow 1^{\text {st }}$ is better than $3^{\text {rd }}$
- no interval info $\rightarrow 1^{\text {st }} \& 3^{\text {rd }}$ not "as different" as $5^{\text {th }} \& 7^{\text {th }}$
- no ratio info \rightarrow no " 0 th place"
- no prop info $\rightarrow 2^{\text {nd }}$ not "twice as good" as $4^{\text {th }}$
- no prop dif info $\rightarrow 1^{\text {st }} \& 5^{\text {th }}$ not "twice as different" as $1^{\text {st }} \& 3^{\text {rd }}$

Interval

- aka \rightarrow numerical, equidistant points
- values are numeric
- different data values represent different "amounts"
- all intervals of a given extent represent the same difference anywhere along the continuum
- "trust" the ordinal information in the value
- "trust" the spacing or relative difference information
- has no meaningful " 0 " (0 value is arbitrary)
- don't "trust" ratio or proportional information
- e.g., \# correct on a 10 -item spelling test of 20 study words
- has ordinal info $\rightarrow 8$ is better than 6
- has interval info $\rightarrow 8$ \& 6 are "as different" as 5 \& 3
- has prop dif info $\rightarrow 2$ \& 8 are "twice as different" as $3 \& 5$
- no ratio info $\rightarrow 0$ not mean "can't spell any of 20 words"
- no proportional info $\rightarrow 8$ not "twice as good" as 4

Positive monotonic trace
"more means more but doesn't tell how much more"

Linear trace

"more how much more"

$$
y=m x+c
$$

"Nearly" Interval Scale

- "good" summative scales
- how close is "close enough"

"Limited" Interval Scale

- provided interval data only over part of the possible range of the scale values / construct
- summative/aggregated scales

Binary Items

Nominal

- for some constructs different values mean different kinds
- e.g., male $=1$ famale $=2$

Ordinal

- for some constructs can rank-order the categories
- e.g., fail $=0$ pass $=1$

Interval

- only one interval, so "all intervals of a given extent represent the same difference anywhere along the continuum"

So, you will see binary variables treated as categorical or numeric, depending on the research question and statistical model.

Ratio

- aka \rightarrow numerical, "real numbers"
- values are numeric
- different data values represent different "amounts"
- "trust" the ordinal information in the value
- "trust" the spacing or relative difference information
- has a meaningful "0"
- "trust" ratio or proportional information
- e.g., number of treatment visits
- has ordinal info $\rightarrow 9$ is better than 7
- has interval info $\rightarrow 9 \& 6$ are "as different" as $5 \& 2$
- has prop dif info $\rightarrow 2$ \& 8 are "twice as different" as $3 \& 5$
- has ratio info $\rightarrow 0$ does mean "didn't visit"
- has proportional info $\rightarrow 8$ is "twice as many" as 4

Pretty uncommon in Psyc \& social sciences

- tend to use arbitrary scales
- usually without a zero
- 20 5-point items \rightarrow 20-100

Linear scale \& "0 means none"
Linear trace w/ 0 "more how much more"

$$
y=m x+c
$$

Kinds of variables \rightarrow Why we care ...

Reasonable mathematical operations

Nominal $\rightarrow \neq=$
Ordinal $\rightarrow \neq<\quad$ >
Interval $\rightarrow \neq<>+-\quad$ (see note below about * /)
Ratio $\rightarrow \neq<=>+-* 1$

Note: For interval data we cannot * or / numbers, but can do so with differences. E.g., while 4 can not be said to be twice 2,8 \& 4 are twice as different as are 5 \& 3 .

Data Distributions

We often want to know the "shape" of a data distribution.
Nominal \rightarrow can't do \rightarrow no prescribed value order

dogs cats fish rats

VS.

fish cats dogs rats

Ordinal \rightarrow can't do well \rightarrow prescribed order but not spacing

Interval \& Ratio \rightarrow prescribed order and spacing

Central Tendency - "best guess of next case’s value"

- mean or arithmetic average $\rightarrow M=\Sigma X / N$
- $1^{\text {st }}$ moment of the normal distribution formula
- since ND unimodal \& symetrical \rightarrow mode $=$ mean $=m d n$

Variability - "index of accuracy of next guess"

- sum of squares \rightarrow SS $=\Sigma(X-M)^{2}$
- variance $\quad \rightarrow \quad s^{2}=\mathrm{SS} /(\mathrm{N}-1)$
- standard deviation $\rightarrow \mathrm{s}=\sqrt{ } \mathrm{s}^{2}$
- std preferred because is on same scale as the mean
- $2^{\text {nd }}$ moment of the normal distribution formula
- average extent of deviation of each score from the mean

Parametric Univariate Statistics for ND/Int variables, cont.
Shape - "index of symmetry"

- skewness \rightarrow

$$
\frac{\Sigma(X-M)^{3}}{(N-1)^{*} s^{3}}
$$

- $3^{\text {rd }}$ moment of the normal distribution formula
- $0=$ symmetrical, $+=$ right-tailed, $-=$ left-tailed
- can't be skewed \& ND

Shape -"index of proportional distribution"

- kurtosis $\rightarrow \mathrm{M}=\Sigma \mathrm{X} / \mathrm{N}$

$$
\frac{\sum(X-M)^{4}}{(N-1)^{*} s^{4}}-3
$$

- 4th moment of the normal distribution formula
- 0 = prop dist as ND, + = leptokurtic, - = platakurtic

The four "moments" are all independent - all combos possible

- mean \& std "make most sense" as indices of central tendency \& spread if skewness $=0$ and kurtosic $=0$

Nonparametric Univariate Statistics for ~ND/~Int variables

Central Tendency - "best guess of next case's value"

- median \rightarrow middle-most value, $50^{\text {th }}$ percentile, $2^{\text {nd }}$ quartile

How to calculate the Mdn

1. Order data values

$$
\begin{aligned}
& \begin{array}{lllllll}
11 & 13 & 16 & 18 & 18 & 21 & 22
\end{array} \\
& \begin{array}{rrrrrrr}
11 & 13 & 16 & 18 & 18 & 21 & 22 \\
1 & 2 & 3 & 4 & 3 & 2 & 1
\end{array} \\
& (7+1) / 2=4
\end{aligned}
$$

2. Assign depth to each value, $\begin{array}{llllllll}11 & 13 & 16 & 18 & 18 & 21 & 22\end{array}$
starting at each end
3. Calculate median depth
$D_{\text {mdn }}=(N+1) / 2$
(or average of 2 values @ $D_{\text {mdn }}$, if odd number of values)

Nonparametric Univariate Statistics for ~ND/~Int variables
Variability - "index of accuracy of next guess"

- Inter-quartile range $(\mathrm{IQR}) \rightarrow$ range of middle 50%, $3^{\text {rd }}-1^{\text {st }}$ quartile

How to calculate the IQR

1. Order \& assign depth to each value

11	13	16	18	18	21	22
1	2	3	4	3	2	1

2. Calculate median depth

$$
D_{\text {Man }}=(N+1) / 2
$$

$$
(7+1) / 2=4
$$

3. Calculate quartile depth

$$
D_{Q}=\left(D_{M d n}+1\right) / 2
$$

4. $1^{\text {st }}$ Quartile value
5. $3^{\text {rd }}$ Quartile value
6. $I Q R-3^{\text {rd }}-1^{\text {st }} Q$ values

$$
(4+1) / 2=2.5
$$

Ave of 13 \& $16=14.5$
Ave of $18 \& 21=19.5$

$$
19.5-14.5=5
$$

Univariate Parametric Statistical Tests for qualitative variables

Goodness-of-fit X^{2} test

- Tests hypothesis about the distribution of category values of the population represented by the sample
- H0: is the hypothesized pop. distribution, based on either ...
- theoretically hypothesized distribution
- population distribution the sample is intended to represent
- E.g., 65% females \& 35% males or 30% Frosh, 45% Soph \& 25% Juniors
- RH: \& H0: often the same!
- binary and ordered category variables usually tested this way
- gof X^{2} compares hypothesized distribution \& sample dist.
- Retaining H0: -- sample dist. "equivalent to" population dist.
- Rejecting H0: -- sample dist. "is different from" population dist.

Data \& formula for the gof X^{2}

Frequency of different class ranks in sample

Frosh	Soph	Junior
25	55	42

$$
X^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Observed frequency - actual sample values (25, 55 \& 42)
Expected frequency - based on a priori hypothesis

- however expressed (absolute or relative proportions, \%s, etc)
- must be converted to expected frequencies

Example of a gof X^{2}
RH: "about $1 / 2$ are sophomores and the rest are divided between frosh \& juniors

1. Obtain expected frequencies

- determine category proportions frosh . 25 soph .5 junior .25
- determine category freq as proportion of total ($\mathrm{N}=134$)
- Frosh $.25 * 122=33.5$ Soph 67 Junior 33.5

2. Compute X^{2}

- $(25-33.5)^{2} / 33.5+(55-67)^{2} / 67+(54-33.5)^{2} / 33.5=16.85$

3. Determine df \& critical X^{2}

- df $=k-1=3-1=2$
- $\mathrm{X}^{2}{ }_{2,05}=5.99 \quad \mathrm{x}^{2}{ }_{2,01}=9.21$

4. NHST \& such

- $\mathrm{X}^{2}>\mathrm{X}^{2}{ }_{2.01}$, so reject H 0 : at $\mathrm{p}=.01$
- Looks like fewer Frosh - Soph \& more Juniors than expected

Doing gof X^{2} "by hand" - Computators \& p -value calculators

The top 2 rows of the X^{2} Computator will compute a gof X^{2}

Univariate Parametric Statistical Tests for ND/Int

1-sample t-test

Tests hypothesis about the mean of the population represented
by the sample (μ-- "mu")

- H0: value is the hypothesized pop. mean, based on either ...
- theoretically hypothesized mean
- population mean the sample is intended to represent
- e.g., pop mean age $=19$
- RH: \& H0: often the same !
- 1-sample t-test compares hypothesized $\mu \& x$
- Retaining H0: -- sample mean "is equivalent to" population μ
- Rejecting H0: -- sample mean "is different from" population μ

If you want to know the p-value with greater precision, use one of the online p-value calculators

Example of a 1-sample t-test
The sample of 22 has a mean of 21.3 and std of 4.3

1. Determine the $\mathrm{HO}: \mu$ value

- We expect that the sample comes from a population with an average age of $19 \quad \mu=19$

2. Compute $\operatorname{SEM} \& t$

- $\mathrm{SEM}=4.3^{2} / 22=.84$
- $\mathrm{t}=(21.3-19) / .84=2.74$

3. Determine df \& t-critical or p-value

- $\mathrm{df}=\mathrm{N}-1=22-1=21$
- Using t-table $t_{21, .05}=2.08 \quad t_{21, .01}=2.83$
- Using p-value calculator $p=.0123$

4. NHST \& such

- $t>t_{2, .05}$ but not $\mathrm{t} 2, .05$ so reject HO : at $\mathrm{p}=.05$ or $\mathrm{p}=.0123$
- Looks like sample comes from population older than 19

1-sample median test

Tests hypothesis about the median of the population represented by the sample H 0 : value is the hypothesized pop. median, based on either ...

- theoretically hypothesized mean
- population mean the sample is intended to represent
-e.g., pop median age = 19
- RH: \& HO: often the same !
- 1-sample median test compares hypothesized \& sample mdns
- Retaining HO: -- sample mdn "is equivalent to" population mdn
- Rejecting H0: -- sample mdn "is different from" population mdn

Example of a 1 -sample median test
age data $\rightarrow \quad 11121313141617171818182020212222$

1. Obtain obtained $\&$ expected frequencies

- determine hypothesized median value $\rightarrow 19$
- sort cases in to above vs. below H0: median value
- Expected freq for each cell $=1 / 2$ of sample $\rightarrow 8$

2. Compute X^{2}

- $(11-8)^{2} / 8+(5-8)^{2} / 8=2.25$

3. Determine df \& X^{2}-critical or p-value

<19	>19
11	5

- $\mathrm{df}=\mathrm{k}-1=2-1=1$
- Using X^{2}-table $\mathrm{X}^{2}{ }_{1,05}=3.84 \mathrm{X}^{2}{ }_{1, .05}=6.63$
- Using p-value calculator $p=.1336$

4. NHST \& such

- X2 < X2 $1, .05 \& p>.05$ so retain H0:
- Looks like sample comes from population with median not different from 19

Tests of Univariate ND

One use of gof X^{2} and related univariate tests is to determine if data are distributed as a specific distribution, most often ND.

No matter what mean and std, a ND is defined by symmetry \& proportional distribution

Using this latter idea, we can use a gof X^{2} to test if the frequencies in segments of the distribution have the right proportions

- here we might use a $\mathrm{k}=6$ gof X 2 with expected frequencies based on \% of 2.14, 13.59, 34.13, 34.13, 13.59 \& 2.14

Tests of Univariate ND

One use of t-tests is to determine if data are distributed as a specific distribution, most often ND.
ND have skewness $=0$ and
kurtosis $=0$
Testing Skewness
t = skewness $/$ SES
Testing Kurtosis
t = kurtosis / SEK
Standard Error of Skewness

$$
S E S \approx \sqrt{ }(6 / N)
$$

Standard Error of Kurtosis
SES $\approx \sqrt{ }(24 / N)$

Both of these are "more likely to find a significant divergence from ND, than that divergence is likely to distort the use of parametric statistics - especially with large N."

