Univariate Parametric & Nonparametric Statistics & Statistical Tests

- · Kinds of variables & why we care
- Univariate stats
 - qualitative variables
 - parametric stats for ND/Int variables
 - nonparametric stats for ~ND/~Int variables
- Univariate statistical tests
 - tests qualitative variables
 - parametric tests for ND/Int variables
 - nonparametric tests for ~ND/~Int variables
 - of normal distribution shape for quantitative variables

Kinds of variable \rightarrow The "classics" & some others ...

Labels

- aka → identifiers
- values may be alphabetic, numeric or symbolic

• different data values represent unique vs. duplicate cases, trials, or events

• e.g., UNL ID#

Nominal

- aka \rightarrow categorical, qualitative
- values may be alphabetic, numeric or symbolic
- · different data values represent different "kinds"
- e.g., species

Ordinal

- aka \rightarrow rank order data, ordered, seriated data
- values may be alphabetic or numeric
- · different data values represent different "amounts"
 - only "trust" the ordinal information in the value
 - don't "trust" the spacing or relative difference information
- has no meaningful "0"
 - don't "trust" ratio or proportional information
- e.g., 10 best cities to live in
 - has ordinal info \rightarrow 1st is better than 3rd
 - no interval info \rightarrow 1st & 3rd not "as different" as 5th & 7th
 - no ratio info \rightarrow no "0th place"
 - no prop info \rightarrow 2nd not "twice as good" as 4th
 - no prop dif info→ 1st & 5th not "twice as different" as 1st & 3rd

Interval

- aka \rightarrow numerical, equidistant points
- values are numeric
- different data values represent different "amounts"
 - all intervals of a given extent represent the same difference anywhere along the continuum
 - "trust" the ordinal information in the value
 - "trust" the spacing or relative difference information
- has no meaningful "0" (0 value is arbitrary)
 - don't "trust" ratio or proportional information
- e.g., # correct on a 10-item spelling test of 20 study words
 - has ordinal info \rightarrow 8 is better than 6
 - has interval info \rightarrow 8 & 6 are "as different" as 5 & 3
 - has prop dif info → 2 & 8 are "twice as different" as 3 & 5
 - no ratio info → 0 not mean "can't spell any of 20 words"
 - no proportional info → 8 not "twice as good" as 4

Positive monotonic trace

"more means more but doesn't tell how much more"

"Nearly" Interval Scale • "good" summative scales

• how close is "close enough"

Binary Items

Nominal

· for some constructs different values mean different kinds

• e.g., male = 1 famale = 2

Ordinal

- · for some constructs can rank-order the categories
- e.g., fail = 0 pass = 1

Interval

• only one interval, so "all intervals of a given extent represent the same difference anywhere along the continuum"

So, you will see binary variables treated as categorical or numeric, depending on the research question and statistical model.

Ratio

- aka → numerical, "real numbers"
- values are numeric
- different data values represent different "amounts"
 - "trust" the ordinal information in the value
 - "trust" the spacing or relative difference information
- has a meaningful "0"
 - "trust" ratio or proportional information
- e.g., number of treatment visits
 - has ordinal info \rightarrow 9 is better than 7
 - has interval info \rightarrow 9 & 6 are "as different" as 5 & 2
 - has prop dif info→ 2 & 8 are "twice as different" as 3 & 5
 - has ratio info → 0 does mean "didn't visit"
 - has proportional info → 8 is "twice as many" as 4

Kinds of variables \rightarrow Why we care ...

Reasonable mathematical operations

Nominal $\rightarrow \neq =$ Ordinal $\rightarrow \neq < = >$ Interval $\rightarrow \neq < = > + -$ (see note below about * /) Ratio $\rightarrow \neq < = > + - * /$

Note: For interval data we cannot * or / numbers, but can do so with differences. E.g., while 4 can not be said to be twice 2, 8 & 4 are twice as different as are 5 & 3.

Data Distributions We often want to know the "shape" of a data distribution. Nominal → can't do → no prescribed value order vs. fish cats dogs rats

Ordinal \rightarrow can't do well \rightarrow prescribed order but not spacing

Interval & Ratio \rightarrow prescribed order and spacing

¥

Univariate Statistics for qualitative variables Central Tendency – "best guess of next case's value" • Mode -- the most common score(s) • uni-, bi, multi-modal distributions are all possible Variability – "index of accuracy of next guess" • # categories • modal gender is more likely to be correct guess of next person than is modal type of pet – more categories of the latter

Shape – symmetry & proportional distribution

- · doesn't make sense for qualitative variables
- no prescribed value order

Parametric Univariate Statistics for ND/Int variables

Central Tendency - "best guess of next case's value"

- mean or arithmetic average \rightarrow M = Σ X / N
- 1st moment of the normal distribution formula
- since ND unimodal & symetrical → mode = mean = mdn

Variability - "index of accuracy of next guess"

- sum of squares \rightarrow SS = $\Sigma(X M)^2$
- variance \rightarrow s² = SS / (N-1)
- standard deviation \rightarrow s = $\sqrt{s^2}$
- std preferred because is on same scale as the mean
- 2nd moment of the normal distribution formula
- average extent of deviation of each score from the mean

Parametric Univariate Statistics for ND/Int variables, cont.

Shape - "index of symmetry"

- skewness \rightarrow $\Sigma (X M)^3$
 - (N 1) * s³
- 3rd moment of the normal distribution formula
- 0 = symmetrical, + = right-tailed, = left-tailed
- can't be skewed & ND

Shape -- "index of proportional distribution"

• kurtosis \rightarrow M = $\Sigma X / N$ $\frac{\Sigma (X - M)^4}{(N - 1)^* s^4} - 3$

4th moment of the normal distribution formula

• 0 = prop dist as ND, + = leptokurtic, - = platakurtic

The four "moments" are all independent – all combos possible

 mean & std "make most sense" as indices of central tendency & spread if skewness = 0 and kurtosic = 0

Nonparametric Univariate Statistics for ~ND/~Int variables

Central Tendency – "best guess of next case's value" • median \rightarrow middle-most value, 50th percentile, 2nd quartile How to calculate the Mdn 1 Order data values 11 13 16 18 18 21 22

2. Assign depth to each value,	11	13	16	18	18	21	22
starting at each end	1	2	3	4	3	2	1
3. Calculate median depth			(7	+ 1)	12	= 4	

18

 Median = value at D_{mdn} (or average of 2 values @ D_{mdn}, if odd number of values)

 $D_{mdn} = (N+1) / 2$

Nonparametric Univariate Statistics for ~ND/~Int variables

Variability – "index of accuracy of next guess" • Inter-quartile range (IQR)→ range of middle 50%, 3rd-1st quartile

How to calculate the IQR			
 Order & assign depth to each value 	11 13 16 18 18 21 22 1 2 3 4 3 2 1		
2. Calculate median depth D _{Mdn} = (N+1) / 2	(7 + 1) / 2 = 4		
3. Calculate quartile depth D _Q = (D _{Mdn} + 1) / 2	(4 + 1) / 2 = 2.5		
4. 1 st Quartile value	Ave of 13 & 16 = 14.5		
5. 3 rd Quartile value	Ave of 18 & 21 = 19.5		
6. IQR – 3 rd - 1 st Q values	19.5 – 14.5 = 5		
Data & formula for the gof X ²			
Frequency of different class ranks in sample	Frosh Soph Junior		
	25 55 42		
$X^{2} = \sum \frac{(observed - expected)^{2}}{expected}$			
Observed frequency – actual sample values (25, 55 & 42)			
Expected frequency – based on a priori hypothesis			
however expressed (absolute or relative proportions, %s, etc)			

• must be converted to expected frequencies

Univariate Parametric Statistical Tests for qualitative variables

Goodness-of-fit X² test

11 13 16 18 18 21 22	 Tests hypothesis about the distribution of category values of the population represented by the sample
(7+1)/2 = 4	 H0: is the hypothesized pop. distribution, based on either theoretically hypothesized distribution population distribution the sample is intended to represent
(4 + 1) / 2 = 2.5	 E.g., 65% females & 35% males or 30% Frosh, 45% Soph & 25% Juniors
Ave of 13 & 16 = 14.5	 RH: & HU: often the same ! binary and ordered category variables usually tested this way
Ave of 18 & 21 = 19.5	 gof X² compares hypothesized distribution & sample dist.
19.5 – 14.5 = 5	• Retaining H0: sample dist. "equivalent to" population dist.
φ.	Rejecting H0: sample dist. "is different from" population dist.
Frosh Soph Junior	
– expected) ²	
spected	
ple values (25, 55 & 42)	
priori hypothesis	
e or relative proportions, %s, etc)	

Example of a 1-sample t-test $t = \frac{\overline{X} - \mu}{1 - \mu}$ SEM = (s ² /p)	Univariate Parametric Statistical Tests for ~ND/~In
The sample of 22 has a SEM (S=711) mean of 21.3 and std of 4.3	1-sample median test
 Determine the H0: μ value We expect that the sample comes from a population with an average age of 19 μ = 19 	Tests hypothesis about the median of the population represented by the sample H0: value is the hypothesized pop. median, based on either
2. Compute SEM & t	 theoretically hypothesized mean
• SEM = $4.3^2/22$ = .84 • t = (21.3 - 19)/.84 = 2.74	 population mean the sample is intended to represent
 3. Determine df & t-critical or p-value df = N-1 = 22 - 1 = 21 Using t-table t 21 05 = 2.08 t 21 01 = 2.83 	• e.g., pop median age = 19
	RH: & H0: often the same !
• Using p-value calculator p = .0123	 1-sample median test compares hypothesized & sample mdns
4. NHST & such	 Retaining H0: sample mdn "is equivalent to" population mdn
 t > t_{2,05} but not t2,.05 so reject H0: at p = .05 or p = .0123 Looks like sample comes from population older than 19 	 Rejecting H0: sample mdn "is different from" population mdn
Example of a 1-sample median test are data \rightarrow 11 12 13 13 14 16 17 17 18 18 18 20 20 21 22 22	
 Obtain obtained & expected frequencies determine hypothesized median value → 19 sort cases in to above visible below H0; median value 	
• Expected freq for each cell = $\frac{1}{2}$ of sample $\rightarrow 8$	
• Expected freq for each cell = $\frac{1}{2}$ of sample $\rightarrow 8$ 2. Compute X ² • $(11 - 8)^2/8 + (5 - 8)^2/8 = 2.25$	
• Solit cases in to above vs. below not median value • Expected freq for each cell = $\frac{1}{2}$ of sample $\rightarrow 8$ 2. Compute X ² • $(11 - 8)^2/8 + (5 - 8)^2/8 = 2.25$ 3. Determine df & X ² -critical or p-value • df = k-1 = 2 - 1 = 1 • Using X ² -table X ² _{1,05} = 3.84 X ² _{1,05} = 6.63 • Using p-value calculator p = .1336	
• Solit cases in to above vs. below H0. median value • Expected freq for each cell = $\frac{1}{2}$ of sample $\rightarrow 8$ 2. Compute X ² • $(11 - 8)^2/8 + (5 - 8)^2/8 = 2.25$ 3. Determine df & X ² -critical or p-value • df = k-1 = 2 - 1 = 1 • Using X ² -table X ² _{1,05} = 3.84 X ² _{1,05} = 6.63 • Using p-value calculator p = .1336 4. NHST & such • X2 < X2 1, .05 & p > .05 so retain H0:	

Tests of Univariate ND

One use of gof X^2 and related univariate tests is to determine if data are distributed as a specific distribution, most often ND.

No matter what mean and std, a ND is defined by symmetry & proportional distribution

Using this latter idea, we can use a gof X² to test if the frequencies in segments of the distribution have the right proportions

• here we might use a k=6 gof X2 with expected frequencies based on % of 2.14, 13.59, 34.13, 34.13, 13.59 & 2.14

Tests of Univariate ND

One use of t-tests is to determine if data are distributed as a specific distribution, most often ND.

ND have skewness = 0 and kurtosis = 0

Testing Skewness	Standard Error of Skewness
t = skewness / SES	SES ≈ √(6/N)
Testing Kurtosis	Standard Error of Kurtosis
t = kurtosis / SEK	SES ≈ √(24 / N)

Both of these are "more likely to find a significant divergence from ND, than that divergence is likely to distort the use of parametric statistics – especially with large N."