2xkxQ Example: "Regression Slope Differences" Type Analysis

The purpose of this study was to examine the relationships of exam review attendance, practice item difficulty and number of practices with exam performance. Practice difficulty was a 3 -condition variable - practice problems were either about the same difficulty as the exam problems ($=1$), they were easier than the exam problems ($=2$), or they were more difficult than the exam problems (=3). Different sections of the course were randomly assigned to receive the three difficulty levels. The schedule showed the class meeting during which the exam review would occur \& student's attendance was recorded. The number of online practice problems each participant completed before taking the exam were also recorded. The dependent variable was performance on an examination.

We can describe these data as either a 3-predictor multiple regression (with dummy-coded categorical variables and a quantitative variable), or as a 2×3 factorial design with a quantitative covariate.

Either way, we should examine whether the interactions among the predictors add any explanatory power to the model.

If we describe these data as a factorial ANCOVA, then including the interactions between the IVs and the covariate would be tests of the homogeneity of regression slope assumption.

Inspection of the group means shows that there is considerable confounding by number of practices across the groups. Not only that, but the pattern of the confounding is complex, suggesting that there will be interactions including number of practices, and so, the regression slope homogeneity assumption is unlikely to hold.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
testperf	54	30.00	100.00	60.1852	17.96125
numpract	54	1.00	10.00	5.2963	2.75838
Valid N (listwise)	54				

Here is a plot of the raw data.

You can see that we have a definite data pattern here - something more complex than the usual slightly tilted ovoid.

It is difficult to anticipate what pattern we will find, especially without knowing what combination of conditions each dot comes from.

But there is definitely a cross-over looking pattern here.

This sort of pattern often goes with finding substantial interactions within the complex desian.

Data Preparation

Here is the syntax to dummy-code the categorical variables, mean-center the quantitative variable, and construct the various interactioins

* pract_s0e1 compares same=1=>0 with easier =2 => 1 .
if (practgrp $=1$) pract_s0e1 =0.
if (practgrp $=2$) pract_s0e1 $=1$.
Practice Difficulty has 3 conditions $\rightarrow 2$ dummy codes will be needed.
if (practgrp $=3$) pract_s0e1 $=0$.
*pract_s0h1 compare same=1=>0 with harder=3=>1.
if (practgrp $=1$) pract_s0h1 $=0$.
if (practgrp $=2$) pract_s0h1 $=0$.
if $($ practgrp $=3)$ pract_s0h1 $=1$.
* atndrev_n0y1 no=1 $=>0$ yes=2=>1.
if (atndrev $=1$) atndrev_n0y1 $=0$.
if (atndrev = 2) atndrev_n0y1 $=1$.
* mean center number of practices.
compute pract_mcen $=$ numpract -5.296 .

Review Attendance is binary $\rightarrow 1$ dummy code will be needed
*practice group x review attendance interaction - takes 2. compute pract_rev_int1 = pract_s0e1 * atndrev_n0y1. compute pract_rev_int2 = pract_s0h1 * atndrev_n0y1.
*practice group x number practices interaction - takes 2. compute pract_npract_int1 = pract_s0e1 * pract_mcen. compute pract_npract_int2 $=$ pract_s0h1 * pract_mcen.

* review attendance x number practices interaction. compute rev_npract_int = atndrev_n0y1 * pract_mcen.

The interaction of practice difficulty and review attendance requires 2 interaction codes \rightarrow the product of the review attendance dummy code with each of the practice difficulty dummy codes, in turn

The interaction of practice difficulty and number of practices will require 2 interaction codes \rightarrow the product of the mean-centered number of practices and each or the practice difficulty dummy codes, in turm.

The interaction of review attendance and number pracities will require just one interaction code \rightarrow the product of the review attendance dummy code and the mean-centered number practices.

```
* 3-way interaction - takes 2.
compute pract_rev_npract_3way1 = pract_s0e1 * atndrev_nOy1 * pract_mcen.
compute pract_rev_npract_3way2 = pract_s0h1 * atndrev_n0y1 * pract_mcen.
```

exe.

SPSS Results

Model Summary				
Model R R Square Adjusted R SquareStd. Error of the Estimate				
1	$.933^{\mathrm{a}}$.870	.835	7.28671

a. Predictors: (Constant), pract_rev_npract_3way2,
pract_npract_int1, pract_s0e1, pract_s0h1, atndrev_noy1,
rev_npract_int, pract_rev_int2, pract_mcen, pract_npract_int2,
pract_rev_npract_3way1, pract_rev_int1

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	14868.108	11	1351.646	25.457	$.000^{\mathrm{a}}$
	Residual	2230.040	42	53.096		
	Total	17098.148	53			

a. Predictors: (Constant), pract_rev_npract_3way2, pract_npract_int1, pract_s0e1,
pract_s0h1, atndrev_nOy1, rev_npract_int, pract_rev_int2, pract_mcen,
pract_npract_int 2 , pract rev_npract_3way1, pract_rev_int 1
b. Dependent Variable: testperf

Coefficients ${ }^{\text { }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	58.938	2.558		23.037	. 000
pract_mcen	-. 969	1.014	-. 149	-. 955	. 345
atndrev_noy1	1.039	9.519	. 029	. 109	. 914
pract_s0e1	-18.247	6.436	-. 490	-2.835	. 007
pract_s0h1	-1.245	5.011	-. 033	-. 248	. 805
rev_npract_int	6.629	2.653	. 625	2.499	. 016
pract_npract_int1	-6.469	2.327	-. 565	-2.779	. 008
pract_npract_int2	8.191	2.172	. 697	3.772	. 001
pract_rev_int1	6.625	11.791	. 139	. 562	. 577
pract_rev_int2	12.548	11.009	. 263	1.140	. 261
pract_rev_npract_3way1	-1.958	3.708	-. 103	-. 528	. 600
pract_rev_npract_3way2	-8.481	3.493	-. 531	-2.428	. 020

a. Dependent Variable: testperf
constant those in the "same difficulty - did not attend review" condition who completed 5.296 practices have an average performance of 58.938%
pract_mcen
antdrev_n0y1
rev_npract_int
for those in the "same difficulty - did not attend review" condition, performance decreased by -. 969 for each additional practice completed
among those with same difficulty practices and who completed 5.296 practices, those who attended the review scored 1.039% better than those who did not
for those in the "same difficulty - did attend review" condition, performance increased by $5.660 \quad(-.969+6.629)$ for each additional practice completed
among those who did not attend the review and completed 5.296 practices, those with easy practices scored 18.247\% poorer than those with same difficulty practices
pract_npract_int1 or those in the "easy difficulty - did not attend review" condition, performance decreased by 7.438 (. $969+-6.469$) for each additional practice completed
pract_s0h1
pract_npract_int2
pract_rev_int1
among those who did not attend the review and completed 5.296 practices, those with hard practices scored 1.245% poorer than those with same difficulty practices
for those in the "hard difficulty - did not attend review" condition, performance increased by 7.222 ($-.969+8.191$) for each additional practice completed
for those with easy difficulty practices who completed 5.296 practices, those who attended the review performed 7.665% better than those who did not attend the review (1.039 + 6.625 -- the simple effect of attending for same difficulty + how much the se of attending for easy difficulty differs)
pract_rev_npract_3way1
pract_rev_int2
for those in the "easy difficulty -did attend review" condition, performance decreased by 2.767 for each additional practice completed ($-.969+6.629-6.469+-1.958-$ the slope for the same-no attend group \& how the slope is different for those who had the review \& how the slope was different for those who had the easy practices \& how the slope differs when both attendance and practice difficulty change simultaneously
for those with hard difficulty practices who completed 5.296 practices, those who attended the review performed 13.587\% better than those who did not attend the review (1.039 + 12.548 -- the simple effect of attending for same difficulty + how much the se of attending for hard difficulty differs)
pract_rev_npract_3way2
for those in the "hard difficulty -did attend review" condition, performance increased by 5.370 for each additional practice completed ($-.969+6.629+8.191+-8.481-$ the slope for the same-no attend group \& how the slope is different for those who had the review \& how the slope was different for those who had the hard practices \& how the slope differs when both attendance and practice difficulty change simultaneously

All the information in the regression weights is captured in the simple testperf - number of practices regression models for each of the six conditions of the practice difficulty x review attendance design ...

			(slope ${ }^{*} \mathrm{X}$) +			height
Not Attend	\cdots	Same	-0.969	* x	+	58.938
Not Attend	-----------	Easier	-7.438	* x	$+$	40.691
Not Attend	\cdots	Harder	7.222	* X	+	57.693
Attended	$\cdots \cdot \cdot$	Same	5.66	* X	+	59.977
Attended	$\cdots \cdot$	Easier	-2.767	* X	+	48.355
Attended	$\cdots \cdot$	Harder	5.37	* X	+	71.28

\ldots and the corresponding plot of the model.

While complex, there are some import aspects to the pattern of the data.
Hard practices \& attend review, hard practices \& not attend review, and same difficulty practices \& attend review all show a practice improvement effect The test performance differences among the 3 conditions are larger at low amounts of practice, with little apparent difference at larger amounts of practice.

Same difficulty practices \& not attend show no practice effect.
Easy difficulty practices \& not attend and easy practices \&attend both show a practice decrement effect, though the effect is less pronounced for those who attend. It seems that doing lots of the easy practices creates a misplaced confidence, that is somewhat offset by attending the review.

Finally - notice anything? Here's a hint..

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
testperf	54	30.00	100.00	60.1852	17.96125
numpract	54	1.00	10.00	5.2963	2.75838
valid N (listwise)	54				

This model fit the data very well $\left(R^{2}=.84\right)$, but still there are y ' values far below the testperf minimum of 30 !!
Why? Remember that we only fit a linear model to these data! There must be some nonliniearity to these data, to account for the "too low" y ' values.

