SPSS: k Between Groups ANOVA \& Trend Analyses

Application: To examine the "shape" of the IV-DV relationship (only used when IV conditions are equally spaced)
Research Hypothesis: Theory suggests an inverted U-shaped relationship between level of anxiety and performance.
H0: for this analysis: There is no mean differences among mean performance in the different anxiety conditions.

Analyze $\boldsymbol{\rightarrow}$ General Linear Model $\boldsymbol{\rightarrow}$ Univariate

- highlight the "Dependent" variable (be sure it is
quantitative) and click the arrow
- highlight the "Factor" (IV, grouping) variable (be sure it is qualitative) and click the arrow
- "Options" - check that you want "Descriptive Statistics
- "Contrasts" - Highlight "Polynomial" \& click "Change"
- "Plots" - Move IV into "Horizontal Axis" then click "Add"

SPSS Syntax

UNIANOVA perf BY anx_Ivl \leftarrow DV "by" IV /CONTRAST(anx_IvI)=Polynomial \leftarrow get trend analysis /METHOD=SSTYPE(3)
/PLOT=PROFILE(anx_Ivl) \leftarrow get means plot /PRINT=DESCRIPTIVE. \leftarrow get descriptive stats

Please Note: You can also perform this analysis using the "ONEWAY" procedure we used for the 2 BG ANOVA and analytic comparisons. It has the same polynomial choices and produces equivalent output.

Descriptive Statistics

Dependent Variable:perf

Anxiety Level	Mean	Std. Deviation	N
1.00	2.3145	1.43834	10
2.00	3.5037	1.42093	10
3.00	5.7605	1.32364	10
4.00	6.1776	1.51531	10
5.00	5.2733	.41903	10
6.00	4.6027	1.93537	10
Total	4.6054	1.91186	60

Tests of Between-Subjects Effects

Dependent Variable:perf

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	107.142^{a}	5	21.428	10.663	.000
Intercept	1272.579	1	1272.579	633.268	.000
anx_lvI	107.142	5	21.428	10.663	.000
Error	108.515	54	2.010		
Total	1488.236	60			
Corrected Total	215.657	59			

Remember, even if the printout shows it, never report $p=.000$, because that would suggest there is no possibility of a Type 1 error. Instead, report " p . .001"

The p -value of .000 means that there less than a . 1% chance that this result is a Type I error

The trend analysis results show...
A significant linear trend

- Inspection of the means and plot shows that this is a positive linear trend
- This results does not support the RH:

A significant quadratic trend

- Inspection of the means and plot shows that this is an inverted U-shaped quadratic trend
- This results supports the RH:

A nonsignificant cubic trend

- This results supports the RH:

Note:
You can compute the t-value for each comparison using $\mathrm{t}=$ Difference (Estimate - Contrast) / Std. Error

For the Linear trend this would be $t=2.052 / .448=4.580$ With $\mathrm{df}=54$

Or if you prefer, $F=t^{2} \quad F=4.5802=20.975 \quad d f=1,54$

Reporting the Results

The average performance for each anxiety level is summarized in Table/Figure 1. There were significant mean differences in the performances among the anxiety levels, $F(5,54)=10.663, M s e=2.010, p<.001$. Trend analyses revealed that, as hypothesized, there was a quadratic component to the relationship, $\mathrm{F}(1,54)=28.552$, $\mathrm{p}<.001$, with the highest average performance for anxiety level 4. Also, there was no cubic trend, $F(1,54)=.198, p=.666$. However, contrary to the research hypothesis, there was also a positive linear component to the relationship, $F(1,54)=20.975$, $\mathrm{p}<.001$, with higher average performance for the higher anxiety levels than for the lower anxiety levels.

