
Loglinear Regression 
 
 In loglinear regression analysis is used to describe the pattern of data in a contingency table.  A model is 
constructed to predict the natural log of the frequency of each cell in the contingency table.  For a 2x2 table, that means 
the model is       lnf ‘  =   br * row   +   bc * col    +   bi * int  +  a 
 

We will focus on two aspects of that model: 1) how well it fits the data and 2) how to use the parameters of that 
model to describe the pattern of data in the contingency table.   
 
Main Effects 

Main effects look at the marginal means of each variable and test whether the conditions of that variable are 
equiprobable -- that is if the conditions occur with the same frequency.  This is similar to computing a goodness-of-fit X² 
for the marginal frequencies of that variable.  While they might not seem very interesting, main effects are a simple place 
to start and can provide important information for a complete description of the . 

 
Let’s start by looking at how qualitative variables are coded and how those codes are interpreted.  As in other 

models using qualitative variables (e.g., GLM)  SPSS builds a set of dummy codes for each qualitative variable.  The 
highest coded group is set as the “comparison” or “control” group and each of the dummy codes compares the frequency 
of each successive group to the frequency of the comparison group.   

 
For example, if the variable has the pet categories   turtles, rats & dogs (coded 1, 2 & 3, respectively), SPSS will 

compute three dummy-coded parameters, as shown below. You might find parameter3 confusing?!?  There are only 2 
degrees of freedom among three groups, and so you might reasonably expect 2 dummy codes/parameters.  However, it is 
easier to do the related computations with all of the codes.  So, SPSS computes the last, redundant or “alias” code and 
you have to remember that it is always going to be 0. 

 
            dummy codes 
Category       original code         parameter1      parameter2        parameter3 
 
Turtles   1   1  0  0 
Rats     2   0  1  0     
Dogs   3   0  0  1 

 
Some examples… 
 
Analyze à Loglinear à General 
 
 

 

 

 
 
Be sure to check “Estimates” in the Options window 

 
Move the variables you want to define the contingency table into “Factor(s)” window and chose the distribution model 
(Poisson or Multinomial) model. 
 
I don’t like the way the contingency table is given in the output, so I usually also run a cross-tabs to get a “regular looking” 
table, using…    Analyze à Descriptive Statistics à Crosstabs 



 

Y * X Crosstabulation

Count

40 40 80
10 10 20
50 50 100

1.00
2.00

Y

Total

1.00 2.00
X

Total

 

 
There is no “main effect” of X -- the marginal frequencies         
are equal. 
 
There is a “main effect” of Y -- more in the “1” group than in 
the “2” group 
 
Also, there is no relationship between X and Y or no 
“interaction”. 

 
Parameter   Aliased  Term 
 
        1            Constant 
        2            [X = 1.00] 
        3       x    [X = 2.00] 
        4            [Y = 1.00] 
        5       x    [Y = 2.00] 
        6            [X = 1.00]*[Y = 1.00] 
        7       x    [X = 1.00]*[Y = 2.00] 
        8       x    [X = 2.00]*[Y = 1.00] 
        9       x    [X = 2.00]*[Y = 2.00] 
 
Note: 'x' indicates an aliased (or a 
redundant) parameter. These parameters are 
set to zero. 
 

 
Here are the parameters SPSS built do use in this analysis. 
• p1 is always the constant 
• p2 & p3 represent “X” -- p2 compares X1 to X2 and p3 is 

redundant 
• p4 & p5 represent “Y” -- p4 compares Y1 to Y2 and p5 is 

redundant 
• p6-p9 represent the interaction or relationship between 

“X” and “Y” -- p6 represents the single degree or 
freedom and p7-p9 are redundant 

 
So, we will be looking at three of these parameters to 
describe the data pattern in the table: 
p2 -- main effect of “X” 
p4 -- main effect of “Y” 
p6 -- interaction or relationship between “X” and “Y” 

Goodness-of-fit Statistics 
 
               Chi-Square       DF     Sig. 
 
Likelihood Ratio    .0000        0      . 
         Pearson    .0000        0      . 
 

 
SPSS gives an overall model fit -- this will always be X²=0 
because the full model (called a “saturated model”) will 
always fit the data perfectly. 

                                               Asymptotic 95% CI 
Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     2.3514      .3086       7.62       1.75       2.96 
        2 -3.015E-15      .4364 -6.908E-15       -.86        .86 
        3      .0000      .            .          .          . 
        4     1.3499      .3463       3.90        .67       2.03 
        5      .0000      .            .          .          . 
        6  7.980E-16      .4898  1.629E-15       -.96        .96 
        7      .0000      .            .          .          . 
        8      .0000      .            .          .          . 
        9      .0000      .            .          .          . 
 
 
p2 -- we expected no main effect of “X”  and this parameter is very close to 0.00 
p4 -- we expected a “Y” main effect and this parameter confirms this 

-- the positive parameter value tells us that the target group (Y=1) has a higher frequency than the comparison (Y=2) 
p6 -- we expected no relationship between “X” and “Y” -- this parameter is also very close to 0.00 
 
How does significance testing work?  There are two (equivalent) tests provided for each parameter 
• The Z-value can be used -- a two-tailed test with p=.05 uses 1.96 as the critical value 
• If the confidence interval includes 0.00, there one would retain the H0: that the parameter = 0.00 
 
 
 
 
 
 



Here’s a slightly more interesting one… 
 

X * Z Crosstabulation

Count

30 10 20 20 80
30 10 20 20 80
60 20 40 40 160

1.00
2.00

X

Total

1.00 2.00 3.00 4.00
Z

Total

 

 
No “X” main effect  & no “interaction” 
 
“Y” main effect 
Y1 > Y4 (comparison group) 
Y2 < Y4 
Y3 = Y4 

Para-  Alias  Term 
Meter 
 
 1            Constant 
 2            [X = 1.00]             ß  x 
 3       x    [X = 2.00] 
 4            [Z = 1.00]             ß  y1 
 5            [Z = 2.00]             ß  y2 
 6            [Z = 3.00]             ß  y3 
 7       x    [Z = 4.00] 
 8            [X = 1.00]*[Z = 1.00]  ß  int1 
 9            [X = 1.00]*[Z = 2.00]  ß  int2 
10            [X = 1.00]*[Z = 3.00]  ß  int3 
11       x    [X = 1.00]*[Z = 4.00] 
12       x    [X = 2.00]*[Z = 1.00] 
13       x    [X = 2.00]*[Z = 2.00] 
14       x    [X = 2.00]*[Z = 3.00] 
15       x    [X = 2.00]*[Z = 4.00] 
 

 

Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     3.0204      .2209      13.68       2.59       3.45 
        2 -4.257E-15      .3123 -1.363E-14       -.61        .61     ß  nsig x = 0 
        3      .0000      .            .          .          . 
        4      .3973      .2856       1.39       -.16        .96     ß  sig    y1 > y4  
        5     -.6690      .3795      -1.76      -1.41        .07     ß  sig    y2 < y4    
        6 -4.607E-15      .3123 -1.475E-14       -.61        .61     ß  sig    y3 = y4 
        7      .0000      .            .          .          . 
        8  1.942E-15      .4039  4.809E-15       -.79        .79     ß  no interaction 
        9  1.661E-16      .5367  3.095E-16      -1.05       1.05     ß 
       10  2.109E-15      .4417  4.773E-15       -.87        .87     ß 
       11      .0000      .            .          .          . 
       12      .0000      .            .          .          . 
       13      .0000      .            .          .          . 
       14      .0000      .            .          .          . 
       15      .0000      .            .          .          . 
  
 



2-way Interactions 
 Parameters for 2-way interactions are formed as the product of the corresponding main effect parameters (same 
as interactions terms in regression).  The number of non-redundant interaction parameters corresponds to the number or 
unique combinations of the main effect parameters.  For example… 
 

• A 2x2 table would have 1 non-redundant parameter for each main effect and 1 non-redundant parameter for the 
interaction.   

• A 2x3 table would have 1 non-redundant parameter for the row effect, 2 non-redundant parameters for the column 
effect and 2 non-redundant parameters for the interaction. 

• A 4x3 table would have 3 non-redundant parameters for the row effect, 2 non-redundant parameters for the 
column effect and 6 non-redundant parameters for the interaction. 

 
An example…  Pay attention -- this is where collinearity raises its head !!! 
 

X * Y Crosstabulation

Count

10 40 50
40 10 50
50 50 100

1.00
2.00

X

Total

1.00 2.00
Y

Total

 

Looks like no “main effect” of X -- the marginal frequencies                       
are equal. 
 
Looks like no “main effect” of Y -- the marginal frequencies                       
are equal. 
 
Looks like there is an “interaction” or a relationship between 
X and Y -- if x=1  y1 < y2   however if x=2 y1 > y2 

                                                Asymptotic 95% CI 
Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     2.3514      .3086       7.62       1.75       2.96 
        2     1.3499      .3463       3.90        .67       2.03  ß “X” main effect   Huh? 
        3      .0000      .            .          .          . 
        4     1.3499      .3463       3.90        .67       2.03  ß “y” main effect   Huh? 
        5      .0000      .            .          .          . 
        6    -2.6999      .4898      -5.51      -3.66      -1.74  ß xy interaction    ok! 
        7      .0000      .            .          .          . 
        8      .0000      .            .          .          . 
        9      .0000      .            .          .          . 
 
                                   
 
 
What happened with the main effects? 
 Remember that this is a multivariate model -- the parameters represent the unique contribution of each term in the 
model after controlling for all the others. The collinearity among the variables will influence how that contribution gets 
“shared” among the terms. 
 Watch what happens when we fit a model that includes only the main effects … 
 
 

  
 



 
                                              Asymptotic 95% CI 
Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     3.2189      .1732      18.59       2.88       3.56 
        2 -3.721E-16      .2000 -1.861E-15       -.39        .39      ß   no “X” effect 
        3      .0000      .            .          .          . 
        4 -3.721E-16      .2000 -1.861E-15       -.39        .39      ß   no “y” effect 
        5      .0000      .            .          .          . 
 
 
So, the pattern of the interaction us such that when the interaction is “controlled for” there are main effect differences -- 
this is the important difference between interpreting the parameters of a model fit to the data and interpreting the pattern 
of the data!  You must consider the “unique effect” described by the parameter estimate corresponds to the “visible” 
pattern in the raw data, and inform your reader appropriately! 
 
 
Another… 

X * Z Crosstabulation

Count

10 40 50
40 40 80
50 80 130

1.00
2.00

X

Total

1.00 2.00
Z

Total

 

Looks like a “main effect” of X -- x1 < x2 
 
Looks like a “main effect” of Y -- y1 < y2 
 
Also, looks like there is an “interaction” or a relationship 
between X and Y -- if x=1  y1 < y2   however if x=2 y1 = y2 

                                               
                                               Asymptotic 95% CI 
Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     3.7013      .1571      23.55       3.39       4.01 
        2  1.467E-15      .2222  6.602E-15       -.44        .44   ß no “X”  effect     huh? 
        3      .0000      .            .          .          . 
        4  1.962E-15      .2222  8.829E-15       -.44        .44   ß no “Y” effect      huh? 
        5      .0000      .            .          .          . 
        6    -1.3499      .4115      -3.28      -2.16       -.54   ß interaction 
        7      .0000      .            .          .          . 
        8      .0000      .            .          .          . 
        9      .0000      .            .          .          . 
 
                                         
                                          Asymptotic 95% CI 
Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     3.8965      .1316      29.62       3.64       4.15 
        2     -.4700      .1803      -2.61       -.82       -.12  ß expected “X” effect 
        3      .0000      .            .          .          . 
        4     -.4700      .1803      -2.61       -.82       -.12  ß expected “Y” effect 
        5      .0000      .            .          .          . 
 
 
So, as before, the “pattern of the marginal means” is not the same as “the pattern of the marginal means after correcting 
for the interaction? 
 
When this happens à   is usually the “apparent interaction pattern” from the table that matches the parameters, while the 
lower-order main effect terms get “jumbled”. 
 
 



3-way Interactions 
 Parameters for 3-way interactions are computed as the product of the three corresponding main effect terms. A 
significant 3-way interaction tells us that the pattern of a 2-way is different at different values of the 3rd variable. 
 
An Example… 
 

X * Y * Z Crosstabulation

Count

10 40 50
40 10 50
50 50 100
10 40 50
40 40 80
50 80 130

1.00
2.00

X

Total
1.00
2.00

X

Total

Z
1.00

2.00

1.00 2.00
Y

Total

 

Apparent effects.. 
 
X main effect   100 < 130 
Y main effect   100 < 130 
Z main effect    100 < 130 
 
 
XY      y1   y2         XZ       z1  z2          ZY    y1  y2 
    x1   20  80               x1  50  50             z1  50 50 
    x2   80  50               x2  50  80             z2  50 80 
 
 
XYZ  different XY pattern for z1 & z2                            

Parameter   Aliased  Term 
 
        1            Constant 
        2            [X = 1.00] 
        3       x    [X = 2.00] 
        4            [Z = 1.00] 
        5       x    [Z = 2.00] 
        6            [Y = 1.00] 
        7       x    [Y = 2.00] 
        8            [X = 1.00]*[Z = 1.00] 
        9       x    [X = 1.00]*[Z = 2.00] 
       10       x    [X = 2.00]*[Z = 1.00] 
       11       x    [X = 2.00]*[Z = 2.00] 
       12            [X = 1.00]*[Y = 1.00] 
       13       x    [X = 1.00]*[Y = 2.00] 
       14       x    [X = 2.00]*[Y = 1.00] 
       15       x    [X = 2.00]*[Y = 2.00] 
       16            [Z = 1.00]*[Y = 1.00] 
       17       x    [Z = 1.00]*[Y = 2.00] 
       18       x    [Z = 2.00]*[Y = 1.00] 
       19       x    [Z = 2.00]*[Y = 2.00] 
       20            [X = 1.00]*[Z = 1.00]*[Y = 1.00] 
       21       x    [X = 1.00]*[Z = 1.00]*[Y = 2.00] 
       22       x    [X = 1.00]*[Z = 2.00]*[Y = 1.00] 
       23       x    [X = 1.00]*[Z = 2.00]*[Y = 2.00] 
       24       x    [X = 2.00]*[Z = 1.00]*[Y = 1.00] 
       25       x    [X = 2.00]*[Z = 1.00]*[Y = 2.00] 
       26       x    [X = 2.00]*[Z = 2.00]*[Y = 1.00] 
       27       x    [X = 2.00]*[Z = 2.00]*[Y = 2.00] 

 
                                              Asymptotic 95% CI 
Parameter   Estimate         SE    Z-value      Lower      Upper 
 
        1     3.7013      .1571      23.55       3.39       4.01 
        2 -6.229E-16      .2222 -2.803E-15       -.44        .44   ß x     didn’t get expected ME 
        4    -1.3499      .3463      -3.90      -2.03       -.67   ß z     didn’t get expected ME 
        6 -2.375E-15      .2222 -1.069E-14       -.44        .44   ß y     didn’t get expected ME 
        8     1.3499      .4115       3.28        .54       2.16   ß xz    expected 2-way 
       12    -1.3499      .4115      -3.28      -2.16       -.54   ß xy    expected 2-way 
       16     1.3499      .4115       3.28        .54       2.16   ß zy    expected 2-way 
       20    -1.3499      .6397      -2.11      -2.60       -.10   ß xzy   expected 3-way 
        
Again we see the differences between the “main effect pattern” and the “contribution of the main effect to the model”. 
 
Also, notice that it is the lower order terms that tend to be “distorted” by considering their unique contribution to the model, 
rather than their pattern.  This is one reason that some give the advice the “ignore” lower order terms when higher order 
terms contribute to the model. 
 


