
Example of Including Nonlinear Components in Regression 
 
These are real data obtained at a local martial arts tournament.  First-time adult competitors were approached during registration and 
asked to complete an informed consent form, a performance anxiety questionnaire and to tell how many times during the last 24 hours 
they had practiced the kata they would be performing.  The criterion variable was the total of four judges' ratings  of their performance. 
 
Looking at Performance Anxiety as a Predictor of Judges Rating 
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You can see the strong quadratic 
component to this bivariate relationship.   
 
We can try to model this using relationship 
using a “quadratic term’ which is X². 
 
There are two ways to do this:  1) squaring 
the raw x scores, and 2) squaring the 
centered x scores (subtracting the mean of 
x from each x score before squaring) 
 

 
SPSS Code: 
 
compute anxsq = anx ** 2.      squaring gives a "linear + quadratic" term 
compute anx_cen = anx – 30.    mean-centering the original variable 
compute anxcensq = (anx - 30) ** 2.   centering first gives a "pure quadratic" term 
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Correlations

1 -.005 -.182 -.970**

. .980 .336 .000

42 30 30 30

-.005 1 .983** .000

.980 . .000 1.000

30 30 30 30

-.182 .983** 1 .183

.336 .000 . .334

30 30 30 30

-.970** .000 .183 1

.000 1.000 .334 .

30 30 30 30

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

time to complete
the task -- DV

ANX

ANXSQ

ANXCENSQ

time to
complete the

task -- DV ANX ANXSQ ANXCENSQ

Correlation is significant at the 0.01 level (2-tailed).**. 

 

Since there is no linear component 
to the bivariate relationship, neither 
the linear nor the linear+quadratic 
terms of the predictor are strongly 
related to performance.  But the 
"pure" quadratic term is. 
 
Notice that the linear and quadratic 
(anxcensq) terms are uncorrelated! 
 
Notice that the sign of the 
correlation is “--“ for an inverted 
quadratic trend (“+” for an U-
shaped trend) 
 
 
 

 



Two Versions of the Multiple Regression --  uncentered vs. centered terms 
 

Model Summary

.970a .942
Model
1

R R Square

Predictors: (Constant), ANXSQ, ANXa. 

 

Coefficientsa

-23.602 2.638 -8.945 .000

3.923 .192 5.218 20.486 .000

-.065 .003 -5.312 -20.856 .000

(Constant)

ANX

ANXSQ

Model
1

B
Std.
Error

Unstandardized
Coefficients

Beta t Sig.

Dependent Variable: time to complete the task -- DVa. 

 
  

 

 
 
 
Notice that while the R² for each model are the same the β weights from the two modes are not the same!  Why?   
 Remember, the multiple regression weights are supposed to reflect the independent contribution of each variable to 

the model -- after controlling for collinearity among the predictors.   
 However, the collinearity between ANX and ANXSQ (the not-centered, linear+quad term) was large enough to “mess 

up” the mathematics used to compute the β weights for ANX and ANXSQ -- giving a nonsense result. 
 The βs from the model using the centered-squared term show the separate contribution of the linear and quadratic 

terms to the model. 
So, there are two good reasons to work with centered terms:  1) they reduce collinearity among the computed predictors 
and 2) each term is a “pure” version of the orthogonal component it is intended to represent. 
 
Interpreting the regression weights for the centered and the center-and-squared terms  
 
Constant  
 expected value of y when value of all predictors = 0 
 value of y when x = mean (after mean-centering, mean = 0 & mean2 = 0) 
 for this model -- those with anxiety of 30 are expected to have a Judges Rating score of 35.304  
 
Linear Term 
 expected change in y for a 1-unit change in x, holding the value of the other variables constant at 0 
 the linear component of how y changes as x changes – is non-significant for this model 
 for this model -- for each 1 point increase in anxiety, judges rating is expected to decrease .004 
 
Quadratic Term 
 a quadratic term is a kind of interaction –   x_cen ** 2  =  x_cen * x_cen 
 it tells about the expected direction and change of the y-x slope changes as the value of x changes 
 +b  the slope becomes more positive as x increases;  -b  the slope becomes less positive as x increases 
 however, there’s one more thing!  Since this is “an interaction term with only one main effect”, the quadratic 

regression weight only tells ½ the expected rate of change.  In other words, 2*bquad tells the expected change in the y-
x slope for a 1-unit increase in x 

 for this model – for each 1-unit increase in anxiety, the y-x slope decreases by 0.13  (2*.065). 



Working with Preparation (# of times practiced kata in the previous 24 hrs) as the Predictor of Judges Rating 
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These data seem to show a combination of a 
positive linear and an inverted-U-shaped quadratic 
trend. 

compute prepsq = prep **2.   computing the “combined term” 
compute prep = (prep - 15.5).     computing the “mean-centered” term 
      Notice something – this used “computational replacement” which is not  
      recommended & can be very confusing!  I suggest you always compute  
      a new variable and label it as the centered variable! 
compute prpcensq = prep ** 2.     computing the “pure quadratic” term 
 

Correlations

1 .845** .703** .388*

. .000 .000 .011

42 42 42 42

.845** 1 .967** .787**

.000 . .000 .000

42 42 42 42

.703** .967** 1 .918**

.000 .000 . .000
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.388* .787** .918** 1

.011 .000 .000 .
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Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N
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performance rating

PREP

PREPSQ

PRPCENSQ

judges
performance

rating PREP PREPSQ PRPCENSQ

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 

 
 
Here are the two versions of the model:  the first using mean-centered terms & the second using the original variables 
 

Model Summary

.956a .914
Model
1

R R Square

Predictors: (Constant), PRPCENSQ, PREPa. 

 

Coefficientsa

17.969 .841 21.4 .000

1.204 .065 .415 18.7 .000

-.031 .003 -.225 -9.6 .000

(Constant)

PREP

PRPCENSQ

Model
1

B Std. Error

Unstandardized
Coefficients

Beta t Sig.

Dependent Variable: judges performance ratinga. 

 
 
Once again, the centered version had lower collinearity & “more reasonable” β results -- R² was again the same. 
 

 

Coefficientsa

10.506 1.288 8.156 .000

2.167 .157 2.547 13.83 .000

-.031 .003 -1.760 -9.559 .000

(Constant)

PREP

PREPSQ

Model
1

B Std. Error

Unstandardized
Coefficients

Beta t Sig.

Dependent Variable: judges performance ratinga. 

 
 

Model Summary 

.956 a .914
Model 
1 

R R Square 

Predictors: (Constant), PRPSQ, PREP a. 

This highlights the problem with 
“computational replacement”  when I went 
back to look at these data, years later, to 
make this handout, I had a tough time 
figuring out the results – sometimes “PREP” 
was the original term & sometimes the mean-
centered term!  Make new variables & label 
them correctly!!  
 
Teaser Alert   Notice that both the raw 
squared term and the centered & squared 
term are highly collinear with the original 
predictor – more about this later! 



Curvilinear relationship *OR* skewed predictor?!? 
 
There are three “red flags” that this second example is not what it appears to be (a curvilinear relationship between prep 
and performance).  
 
1) Re-examine the original scatter plot – notice that there are far fewer cases on the right side of the plot than the left   
2) Notice that the mean (15.5) is pretty low for a set of scores with a 0-50 range  
3) The mean-centered term is highly collinear with the mean-centered & squared term   
 
All three of these hint at a skewed predictor – the first two suggesting a positive skew.  
 
 
 
Looking at the univariate statistics (which we really should have done along with the other elements of data screening 
sefore we did the fancy-schmancy trend modeling, we found a Skewness = 1.27, which is higher than the common cutoff 
of .80. What would happen if we “symmetrized” this variable -- say with a square root transformation? 
 
 
 
compute prepsr = prep ** .5.               should decrease the skewing of prep 
compute prepsr = (prepsr – 3.586)     mean-centering the square-rooted term (replaced!!) 
compute prepsrcs = (prepsr – 3.586) ** 2   quadratic term for “unskewed” version of prep 
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Correlations
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.920 1 .000
.000 . 1.000

42 42 42
.020 .000 1
.865 1.000 .

42 42 42

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

judges
perfomance
rating

PREPSR

PREPSRCS

judges
performance

rating PREPSR
PREPSR

CS

 
 
 

 
 
This simple transformation resulted in a near-orthogonality between the linear and quadratic terms.   
 
Look at the results from the transformed data  we get a linear scatterplot,  a strong linear relationship &  no nonlinear 
relationship,  
 
Take-Home Message:  It is very important to differentiate between “true quadratic components” and “apparent quadratic 
components” that are produced by a skewed predictor!!  Always remember to screen your data and consider the 
univariate and bivariate data patterns before hurrying onto the multivariate analysis!!! 



Diminishing Returns Curvilinear Models 
 
Probably the most common linear+quadratic form seem in behavioral research is the “diminishing returns” trend.  Initial 
rapid increases in y with increases in x (a substantial positive linear slope) eventually diminish, so that greater increases 
in x are need to have substantial increases in y (a lessening positive linear slope & so a negative quadratic trend).  Here 
are two variations of that type of trend – an “early peaking” on  the left and a “later peaking” on the right.   
 
Both analyses use the same predictor, which was prepared for the 
analysis by mean-centering and then squaring the mean-centered 
version. 

compute x_cen = x – 7.1053. 
compute x_cen_sq = x_cen ** 2. 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

   
Something to notice: 
     Often, there are “individual differences in asymptotic attainment” a term sometimes used by biometricians to mean that 
different individual’s trends flatten out at different values of x.  Econometricians sometimes use the term “individuated 
point of inflection” which means the same thing.   
     Since we are exploring this y-x relationship using a between subjects design  (rather than using a repeated measures 
or longitudinal design/analysis) this usually is expressed as there being greater variability in scores around the inflection 
point.  This is easily seen in the y1-x relationship – look at the greater variability in y1 scores for x values of 5-7, 
 
Comparison of the two diminishing return models shows some common differences: 

 A relatively stronger quadratic term for the early-peaking model (β = -.53) than the late-peaking model (β = -.127) 
 A stronger linear term for the late-peaking model(β = -.945)  than the late-peaking model (β = -.716) 

 
Remember to interpret the quadratic term as an interaction!!! 
How much does the criterion change as x increases by 1?  It depends!  The change in y with a 1-unit change in x depends 
on the starting value of x! 



 
“Learning Curves” 
 
Perhaps the quintessential nonlinear model in behavioral sciences is the combination of a positive linear trend and an 
initially-decreasing cubic trend into a “learning curve”.  Some developmental and learning psychologists have been so 
bold as to assert that nearly any time you get linear or linear+quadratic trend, you would have gotten a “learning curve” if 
you had included lower x values, higher x values, or both!  In other words, a linear trend is just the middle of a learning 
curve, an “accelerating returns” model is just the earlier part and a “diminishing returns” model is just the later part of the 
learning curve. However, the limited number of important cubic trends in the literature would seem to belie this 
characterization. 
 

 

Here is the syntax to  
compute x_cen = x – 7.1053. 
compute x_cen_sq = x_cen ** 2. 
compute x_cen_cube = x_cen ** 

 

 
 

 
 

 
Yep, a cubic term is like a 3-way interaction x*x*x ! 
 
Just as you can interpret a 3-way interaction as “how the 2-
way interaction differs across values of the 3rd variable,” you 
can interpret a cubic term as how the quadratic term changes 
across values of x.  
 
“A cubic trend tells how the way that the slope of the y-x 
relationship that changes across values of x, changes across 
values of x!”  David Owen Shaw 
 
  

 
 
For this model: 

 It is easy to see the positive linear trend in the data! 
 The negative cubic trend tells us that the quadratic trend is increasingly negative with increasing values of x.  Said 

differently, the quadratic trend at smaller values of x is positive (y-x linear slope gets more positive), while the 
quadratic trend at larger values of x is negative (y-x  linear slope gets more less positive). 

 There is a no quadratic trend, because “the positive quadratic trend at low values of x” and “the negative 
quadratic trend at higher values of x”  average out to “no quadratic trend” 

 
 
 


