Factor Rotation

Back to the adolescent data -- let's look at different rotations of the three factors with $\lambda > 1.00$.

Varimax rotation

- tends to produce multiple group factors
- maintaining orthogonality often results in increased multivocality (loadings of variables on "primary factors" is decreased a bit and loadings on "secondary factors" is raised a bit)

Factor Analysis: Rol	ation	×
Method C <u>N</u> one C <u>V</u> arimax C Direct <u>D</u> blimin Delta:	C Quartimax C Equamax C Promax Kappa 4	Continue Cancel Help
Display <u>R</u> otated solution Maximum Iterations for		

It is easy and reasonable to criticize orthogonal rotations for being "simplistic" or "artificial". After all, most things we study are at least somewhat related. For example, if I told you that I had several anxiety and several depression measures and that they factored into 2 factors, you'd not be surprised. But if I told you that the two factors were "depression" and "anxiety," you'd not be surprised. If I told you that those 2 factors were uncorrelated, you'd probably be surprised.

Oblique solution help to reduce this artificiality.

		Initial Eigenvalu	ies	Extractio	Extraction Sums of Squared Loadings			n Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.048	38.097	38.097	3.048	38.097	38.097	2.304	28.798	28.798
2	1.709	21.363	59.459	1.709	21.363	59.459	2.093	26.163	54.961
3	1.340	16.746	76.205	1.340	16.746	76.205	1.699	21.244	76.205
4	.636	7.953	84.158						
5	.483	6.036	90.194						
6	.340	4.244	94.438						
7	.240	3.000	97.438						
8	.205	2.562	100.000						

Total Variance Explained

Extraction Method: Principal Component Analysis.

Notce the variance "spreads out" across the 3 factors with this rotation -- common with Varimax.

- "sad" is a classic example of increased simple structure \rightarrow goes from multivocal to univocal
- so do several others
- note however, "extreme verbal abuse" → goes from univocal to multivocal
 - seems it would be very important to properly interpret why this variable is multi-vocal!

	Component					
	1 2 3					
physical aggression	.758	.413	1.164E-03			
property damage	.693	.489	199			
theft	.362	.656	204			
extreme verbal abuse	.826	6.589E-02	.235			
sad	.540	510	.441			
anxious	.654	335	.507			
self-confidence	349	.539	.669			
compliance	580	.450	.551			

Component Matrix^a

Rotated Component Matrix

	Component				
	1	2	3		
physical aggression	.807	.301	-6.51E-02		
property damage	.853	9.875E-02	148		
theft	.751	186	6.583E-02		
extreme verbal abuse	.562	.645	105		
sad	-8.06E-02	.846	155		
anxious	.110	.884	-5.44E-02		
self-confidence	3.339E-02	-2.60E-02	.927		
compliance	165	209	.879		

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

a. Rotation converged in 4 iterations.

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Quartimax rotation

tends to produce a general factor and additional smaller multiple group factors

Factor Analysis: Ro	tation	×
Method C <u>N</u> one C <u>V</u> arimax CDirect <u>O</u> blimin Delta: 0	 O Quartimax ○ Equamax ○ Promax ▲appa 4 	Continue Cancel Help
Display <u>R</u> otated solution Maximum Iterations for		

- Quartimax rotation won't make strong group factors "go away"
- but you know you have a weak factor structure if varimax & quqrtimax give importantly different solutions
- one source of a weak factor structure that gives different solutions from different rotations is over factoring

Total Variance Explained

		Initial Eigenvalues			Extraction Sums of Squared Loadings			Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.048	38.097	38.097	3.048	38.097	38.097	2.337	29.214	29.214
2	1.709	21.363	59.459	1.709	21.363	59.459	2.083	26.040	55.254
3	1.340	16.746	76.205	1.340	16.746	76.205	1.676	20.951	76.205
4	.636	7.953	84.158						
5	.483	6.036	90.194						
6	.340	4.244	94.438						
7	.240	3.000	97.438						
8	.205	2.562	100.000						

Extraction Method: Principal Component Analysis.

Still got some "spreading around" of the variance across the factors -- looks much the same as the varimax

- Pretty strong sign for "group factors" → got them from both varimax and quartimax
- Remember, "strong" solutions won't be "hidden" by the rotation you select

	Component				
	1	2	3		
physical aggression	.758	.413	1.164E-03		
property damage	.693	.489	199		
theft	.362	.656	204		
extreme verbal abuse	.826	6.589E-02	.235		
sad	.540	510	.441		
anxious	.654	335	.507		
self-confidence	349	.539	.669		
compliance	580	.450	.551		

Component Matrix^a

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

Rotated Component Matrix

	Component				
	1	2	3		
physical aggression	.814	.285	-4.99E-02		
property damage	.856	8.321E-02	135		
theft	.746	203	7.244E-02		
extreme verbal abuse	.576	.634	-8.73E-02		
sad	-6.10E-02	.850	142		
anxious	.129	.882	-3.86E-02		
self-confidence	2.063E-02	-4.15E-02	.927		
compliance	181	220	.873		

Extraction Method: Principal Component Analysis. Rotation Method: Quartimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Direct Oblimin rotation

· Tends to produce varimax-looking factors, but which are oblique

Factor Analysis: Rol	ation	×
Method C None C ⊻arimax C Direct <u>D</u> blimin Delta:	C Quartimax C Equamax C Promax Kappa 4	Continue Cancel Help
Display <u>B</u> otated solution Maximum Iterations for		

Delta is a parameter that "controls" the extent of obliqueness amongst the factors.

- Negative values "decrease" factor correlations
- "0" is the default
- Positive values (don't go over .8) "permit" additional factor correlation

When you do an oblique rotation you get two different matrices that can be used for interpretation:

- the structure matrix holds the correlations between each variable and each factor (same as with orthogonal rotations)
- the pattern matrix holds the beta weights to reproduce variable scores from factor scores

There is considerable disagreement about which of these is the better basis for factor interpretation:

- Those who like using the structure matrix point out the long history of naming or interpreting factors (and other composite variables -- ldf, canonical correlation) in terms of the "variables with which they correlate."
- Those who like using the pattern matrix point out that there is often "simpler structure" in the pattern matrix
- Those who like using the structure matrix point out that the apparent "simpler structure" (i.e., fewer multivocal items) in the pattern matrix is an illusion, made possible because of the correction for collinearity by the beta weights.
- Typically, the interpretation based on the two matrices will be similar ...

	Component				
	1 2 3				
physical aggression	.241	.787	-1.36E-02		
property damage	1.783E-02	.848	119		
theft	240	.779	6.824E-02		
extreme verbal abuse	.608	.507	-2.52E-02		
sad	.858	163	-7.26E-02		
anxious	.896	3.050E-02	3.954E-02		
self-confidence	9.405E-02	7.397E-02	.949		
compliance	-8.61E-02	113	.875		

Pattern Matrix^a

Delta	=	0

	Component			
	1	2	3	
physical aggression	.379	.829	146	
property damage	.191	.862	203	
theft	123	.731	.051	
extreme verbal abuse	.701	.613	218	
sad	.847	010	261	
anxious	.891	.180	176	
self-confidence	118	.000	.919	
compliance	313	211	.906	

Structure Matrix

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization.

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization.

a. Rotation converged in 9 iterations.

Promax Rotation

- An oblique rotation that tends to produce group factors that look like Direct Oblimin & Varimax
- Promax computations are more much quicker, so it is commonly used with very large factorings