Another example of testing a research hypothesis by comparing a full nested model -- and a bit more...

Something that you are all familiar with is the selection of students for a graduate psychology program. The program involved had routinely requested four pieces of information from applicants: gre quant score, gre verbal score, Miller's Analogy Test scores, and a rating (5-point scale) from the applicants major undergraduate advisor. One member of the selection committee has the hypothesis that the last two of these (MAT and Rating) were unnecessary, that the two GRE scores provided equivalent information, and they alone (the reduced model) would predict graduate student grades as well as all four of the variables (the full model). Here we go...

SPSS Code:

SPSS Output:

Equation Number 1	-					
Variable(s) Entered	l on Step Number	1 GREV 2				
			You will	I notice that t	he R-square Change for the	e first
Multiple R	.69874		model re	quested is th	e same as the R-square for	r that
R Square	.48824	R Square Cha	ange .	48824	m	nodel.
Adjusted R Square	.45033	F Change	12.	87959		
Standard Error	.44472	Signif F Cha	ange .	0001		
Analysis of Variance						
		Squares	Mean Squ	are		
Regression		.09463	2.547	31		
Residual	27 5	.34004	.197	78		
F = 12.87959	Signif F =	.0001				
		D				
	ariables in the	-				
Variable	B SE B	Beta		Sig T		
	.001119					
~	.001885					
(Constant) -1.274	.963890		-1.322	.1972		

So far so good. The reduced model "works," accounting for nearly 50% of the variance in the graduate school GPA! Also, BOTH of the variables in this reduced model are contributing to the model (though the raw score regression weights for both are quite small, because of the scale difference between GREs (mean = 500, std = 100) and GPA.

Now, we will test the research hypothesis by adding the other elements of the full model, to see if the R-square improves significantly. If it does, then the committee member's research hypothesis is not supported.

SPSS Output:

Variable(s)	Entered on	Step Nu	umber	3	MAT 4.	. AVERA	TE
Multiple R Square Adjusted Standard	R Square	.80177 .64283 .58568 .38611		F	Square Change ignif F	5	.15459 5.41030 .0112
Analysis of Variance							
		DF	Sum of	Squa	ares	Mean S	Square
Regressio	on	4		6.7	0773	1	.67693
Residual		25		3.72	2693		.14908
F =	11.24876	Sig	nif F =	.0	000		

	Variables	in the	Equation		
Variable	В	SE B	Beta	Т	Sig T
GREV	.001538	.001042	.212965	1.476	.1524
GREQ	.003993	.001792	.328059	2.229	.0351
MAT	.020996	.009520	.323681	2.205	.0368
AVERATE	.141783	.112770	.198180	1.257	.2203
(Constant)	-1.742873	.939926		-1.854	.0755

Contrary to the committee member's research hypothesis, the addition of the MAT and the Rating did significantly improve the R-square (from .488 to .643, with a significant F Change).

However, you should note that not all four predictors are contributing to the full model. Specifically, both GREV and the Rating have non-significant regression weights in this model. This suggests that the full model is not necessary. What we know about the interpretation of multiple regression weights (that they reflect the contribution of that variable in that particular model) tells us that we can remove EITHER (BUT NOT BOTH) of these non-contributors without lowering the R-square significantly from .643.

Which should we choose? From a statistical perspective, the Rating is less likely to contribute to the full model than is GREV (compare the significance levels of the t-test). Also, from the committee member's perspective, the one to toss would be the Rating. So, the committee member decided to examine the model including only GREV. GREQ, and MAT.

SPSS Code:

```
regression variables = gpa greq grev mat averate
/statistics r coef anova cha
/dependent = gpa /enter grev greq mat averate / remove averate.
```

The full model results were the same as shown just above (deleted here to save paper). Below is the result from removing the Rating.

Equation Number 1	Dependent	: Variab	ole GPA				
Block Number 2.	Method: F	Remove	AVERATE				
Multiple R R Square Adjusted R Square Standard Error	.78756 .62025 .57643 .39039		R Square (F Change Signif F (1	.02258 .58075 .2203		
Analysis of Variance DF Sum of Squares Mean Square							
Regression Residual	3 26		6.47208 3.96259	2.15	736		
F = 14.15524	Sigr	nif F =	.0000				
Variables in the Equation							
Variable	В	SE E	B Beta	Т	Sig T		
GREV .	004630	.001051	.345674	4.405	.0014		
MAT .	026136	.008694	.402919	3.006	.0058		
		.001661		2.946			
(Constant) -2.1				-2.397			

These results indicate that there is no significant loss in predictive power when the Rating is dropped from the regression model. In addition, notice that all three of the predictors are contributing significantly to the model. So, one way of describing these results is that the committee member was "half right", having correctly identified the Rating as unnecessary, but also incorrectly wanting to toss the MAT, which was contributing.