Missing Data
Missing Data Methods in ML
Multiple Imputation

PSYC 943 (930): Fundamentals of Multivariate Modeling
Lecture 18: October 31, 2012
Today’s Lecture

• The basics of missing data:
 - Types of missing data

• How NOT to handle missing data
 - Deletion methods (both pairwise and listwise)
 - Mean-substitution
 - Single Imputation

• How maximum likelihood works with missing data

• Multiple imputation for missing data
 - How imputation works
 - How to conduct analyses with missing data using imputation
To demonstrate some of the ideas of types of missing data, let’s consider a situation where you have collected two variables:

- IQ scores
- Job performance

Imagine you are an employer looking to hire employees for a job where IQ is important.
<table>
<thead>
<tr>
<th>IQ</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>9</td>
</tr>
<tr>
<td>84</td>
<td>13</td>
</tr>
<tr>
<td>84</td>
<td>10</td>
</tr>
<tr>
<td>85</td>
<td>8</td>
</tr>
<tr>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>91</td>
<td>7</td>
</tr>
<tr>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>11</td>
</tr>
<tr>
<td>96</td>
<td>7</td>
</tr>
<tr>
<td>99</td>
<td>7</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>11</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
</tr>
<tr>
<td>108</td>
<td>10</td>
</tr>
<tr>
<td>112</td>
<td>10</td>
</tr>
<tr>
<td>113</td>
<td>12</td>
</tr>
<tr>
<td>115</td>
<td>14</td>
</tr>
<tr>
<td>118</td>
<td>16</td>
</tr>
<tr>
<td>134</td>
<td>12</td>
</tr>
</tbody>
</table>

Complete Data
From Enders (2010)
TYPES OF MISSING DATA
Let’s let D denote our data matrix, which will include dependent (Y) and independent (X) variables

$$D = \{X, Y\}$$

Problem: some elements of D are missing

Our Notational Setup

PSYC 943: Lecture 18
Missingness Indicator Variables

• We can construct an alternate matrix M consisting of indicators of missingness for each element in our data matrix D

\[M_{ij} = 0 \text{ if the } i^{th} \text{ observation's } j^{th} \text{ variable is not missing} \]
\[M_{ij} = 1 \text{ if the } i^{th} \text{ observation's } j^{th} \text{ variable is missing} \]

• Let M_{obs} and M_{mis} denote the observed and missing parts of M

\[M = \{M_{obs}, M_{mis}\} \]
Types of Missing Data

- A very rough typology of missing data puts missing observations into three categories:

1. Missing Completely At Random (MCAR)
2. Missing At Random (MAR)
3. Missing Not At Random (MNAR)
Missing Completely At Random (MCAR)

- Missing data are MCAR if the events that lead to missingness are independent of:
 - The observed variables
 - The unobserved parameters of interest

- Examples:
 - Planned missingness in survey research
 - Some large-scale tests are sampled using booklets
 - Students receive only a few of the total number of items
 - The items not received are treated as missing – but that is completely a function of sampling and no other mechanism
A (More) Formal MCAR Definition

• Our missing data indicators, M are statistically independent of our observed data D

\[P(M|D) = P(M) \]

this comes from how independence works with pdfs

• Like saying a missing observation is due to pure randomness (i.e., flipping a coin)
Implications of MCAR

• Because the mechanism of missing is not due to anything other than chance, inclusion of MCAR in data will not bias your results
 - Can use methods based on listwise deletion, multiple imputation, or maximum likelihood

• Your effective sample size is lowered, though
 - Less power, less efficiency
MCAR Data

Missing data are dispersed randomly throughout data.

Mean IQ of complete cases: 99.7
Mean IQ of incomplete cases: 100.8

<table>
<thead>
<tr>
<th>IQ</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>13</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>8</td>
</tr>
<tr>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>91</td>
<td>7</td>
</tr>
<tr>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>11</td>
</tr>
<tr>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td>7</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>11</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
</tr>
<tr>
<td>108</td>
<td>10</td>
</tr>
<tr>
<td>112</td>
<td>-</td>
</tr>
<tr>
<td>113</td>
<td>12</td>
</tr>
<tr>
<td>115</td>
<td>14</td>
</tr>
<tr>
<td>118</td>
<td>16</td>
</tr>
<tr>
<td>134</td>
<td>-</td>
</tr>
</tbody>
</table>
Missing At Random (MAR)

• Data are MAR if the probability of missing depends **only** on some (or all) of the observed data

• M is independent of D_{mis}

\[
P(M | D) = P(M | D_{obs})
\]
<table>
<thead>
<tr>
<th>IQ</th>
<th>Perf</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>112</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>118</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>134</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

MAR Data

Missing data are related to other data:

Any IQ less than 90 did not have a performance variable

Mean IQ of incomplete cases: 83.6
Mean IQ of complete cases: 105.5
Implications of MAR

• If data are missing at random, biased results could occur

• Inferences based on listwise deletion will be biased and inefficient
 • Fewer data points = more error in analysis

• Inferences based on maximum likelihood will be unbiased but inefficient

• We will focus on methods for MAR data today
Missing Not At Random (MNAR)

- Data are MNAR if the probability of missing data is related to values of the variable itself
 \[P(M|D) = P(M|D_{obs}, D_{mis}) \]

- Often called non-ignorable missingness
 - Inferences based on listwise deletion or maximum likelihood will be biased and inefficient

- Need to provide statistical model for missing data simultaneously with estimation of original model
SURVIVING MISSING DATA: A BRIEF GUIDE
Using Statistical Methods with Missing Data

• Missing data can alter your analysis results dramatically depending upon:
 1. The type of missing data
 2. The type of analysis algorithm

• The choice of an algorithm and missing data method is important in avoiding issues due to missing data
The Worst Case Scenario: MNAR

- The worst case scenario is when data are MNAR: missing not at random
 - Non-ignorable missing

- You cannot easily get out of this mess
 - Instead you have to be clairvoyant

- Analyses algorithms must incorporate models for missing data
 - And these models must also be right
In most empirical studies, MNAR as a condition is an afterthought.

It is impossible to know definitively if data truly are MNAR.
 - So data are treated as MAR or MCAR.

Hypothesis tests do exist for MCAR.
 - Although they have some issues.
The Best Case Scenario: MCAR

• Under MCAR, pretty much anything you do with your data will give you the “right” (unbiased) estimates of your model parameters

• MCAR is very unlikely to occur
 ➢ In practice, MCAR is treated as equally unlikely as MNAR
The Middle Ground: MAR

- MAR is the common compromise used in most empirical research
 - Under MAR, maximum likelihood algorithms are unbiased

- Maximum likelihood is for many methods:
 - Linear mixed models in PROC MIXED
 - Models with “latent” random effects (CFA/SEM models) in Mplus
MISSING DATA IN MAXIMUM LIKELIHOOD
Missing Data with Maximum Likelihood

• Handling missing data in maximum likelihood is much more straightforward due to the calculation of the log-likelihood function
 ➢ Each subject contributes a portion due to their observations

• If some of the data are missing, the log-likelihood function uses a reduced form of the MVN distribution
 ➢ Capitalizing on the property of the MVN that subsets of variables from an MVN distribution are also MVN

• The total log-likelihood is then maximized
 ➢ Missing data just are “skipped” – they do not contribute
Each Person’s Contribution to the Log-Likelihood

- For a person \(p \), the MVN log-likelihood can be written:

\[
\log L_p = -\frac{V}{2} \log(2\pi) - \frac{1}{2} \log(|\Sigma_p|) - \frac{(y_p - \mu_p)^T \Sigma_p^{-1} (y_p - \mu_p)}{2}
\]

- From our examples with missing data, subjects could either have all of their data...so their input into \(\log L_p \) uses:

\[
y_p = \begin{bmatrix} y_{p,IQ} \\ y_{p,Perf} \end{bmatrix}; \\
\mu_p = X_p \beta = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \beta_0 + \beta_1 \end{bmatrix} = \begin{bmatrix} \mu_{IQ} \\ \mu_{Perf} \end{bmatrix}; \\
\Sigma_p = \begin{bmatrix} \sigma_{IQ}^2 & \sigma_{IQ,Perf} \\ \sigma_{IQ,Perf} & \sigma_{Perf}^2 \end{bmatrix}
\]

- ...or could be missing the performance variable, yielding:

\[
y_p = [y_{p,IQ}]; \mu_p = X_p \beta = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = [\beta_0 + \beta_1] = [\mu_{IQ}]; \Sigma_p = [\sigma_{IQ}^2]
\]
Evaluation of Missing Data in PROC MIXED (and pretty much all other packages)

• If the dependent variables are missing, PROC MIXED automatically skips those variables in the likelihood
 - The REPEATED statement specifies observations with the same subject ID – and uses the non-missing observations from that subject only

• If independent variables are missing, however, PROC MIXED uses listwise deletion
 - If you have missing IVs, this is a problem
 - You can sometimes phrase IVs as DVs, though

• SAS Syntax (identical to when you have complete data):

 *EMPTY MODEL: MCAR Data;
 PROC MIXED DATA=WORK.jobstackMCAR METHOD=ML COVTEST NOPROFILE ITDETAILS IC;
 CLASS variable;
 MODEL value = variable / S;
 REPEATED / SUBJECT=ID TYPE=UN R=1,2 RCORR;
 RUN;
Analysis of MCAR Data with PROC MIXED

• Covariance matrices from slide #4 (MIXED is closer to complete):

<table>
<thead>
<tr>
<th>MCAR Data (Pairwise Deletion)</th>
<th>Complete Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ</td>
<td>115.6</td>
</tr>
<tr>
<td>Performance</td>
<td>19.4</td>
</tr>
</tbody>
</table>

• Estimated \mathbf{R} matrix from PROC MIXED:

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Z Value</th>
<th>Pr Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>ID</td>
<td>189.60</td>
<td>59.9557</td>
<td>3.16</td>
<td>0.0008</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>ID</td>
<td>31.7352</td>
<td>14.0984</td>
<td>2.25</td>
<td>0.0244</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>ID</td>
<td>10.0446</td>
<td>4.0984</td>
<td>2.45</td>
<td>0.0071</td>
</tr>
</tbody>
</table>

• Output for each observation (obs #1 = missing, obs #2 = complete):

<table>
<thead>
<tr>
<th>Estimated \mathbf{R} Matrix for Subject 1</th>
<th>Estimated \mathbf{R} Matrix for Subject 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>1</td>
</tr>
<tr>
<td>Col1</td>
<td>1</td>
</tr>
</tbody>
</table>
MCAR Analysis: Estimated Fixed Effects

- Estimated mean vectors:

<table>
<thead>
<tr>
<th>Variable</th>
<th>MCAR Data (pairwise deletion)</th>
<th>Complete Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ</td>
<td>93.73</td>
<td>100</td>
</tr>
<tr>
<td>Performance</td>
<td>10.6</td>
<td>10.35</td>
</tr>
</tbody>
</table>

- Estimated fixed effects:

| Effect variable | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-----------------|----------|----------------|-----|---------|------|---|
| Intercept | 10.6446 | 0.7623 | 19 | 13.96 | <.0001|
| variable IQ | 89.3554 | 2.6244 | 19 | 34.05 | <.0001|
| variable Performance MCAR | 0 | . | . | . | . |

- Means – IQ = 89.36 + 10.64 = 100; Performance = 10.64
Analysis of MAR Data with PROC MIXED

• Covariance matrices from slide #4 (MIXED is closer to complete):

<table>
<thead>
<tr>
<th>MAR Data (Pairwise Deletion)</th>
<th>Complete Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ 130.2 19.5</td>
<td>IQ 189.6 19.5</td>
</tr>
<tr>
<td>Performance 19.5 7.3</td>
<td>Performance 19.5 6.8</td>
</tr>
</tbody>
</table>

• Estimated \mathbf{R} matrix from PROC MIXED:

<table>
<thead>
<tr>
<th>Cov Parm</th>
<th>Subject</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Z Value</th>
<th>Pr Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN(1,1)</td>
<td>ID</td>
<td>189.60</td>
<td>59.9567</td>
<td>3.16</td>
<td>0.0008</td>
</tr>
<tr>
<td>UN(2,1)</td>
<td>ID</td>
<td>28.3696</td>
<td>12.6862</td>
<td>2.24</td>
<td>0.0253</td>
</tr>
<tr>
<td>UN(2,2)</td>
<td>ID</td>
<td>8.6176</td>
<td>3.3995</td>
<td>2.53</td>
<td>0.0056</td>
</tr>
</tbody>
</table>

• Output for each observation (obs #1 = missing, obs #10 = complete):

<table>
<thead>
<tr>
<th>Estimated R Matrix for Subject 1</th>
<th>Estimated R Matrix for Subject 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>Col1</td>
</tr>
<tr>
<td>1</td>
<td>189.60</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAR Analysis: Estimated Fixed Effects

- Estimated mean vectors:

<table>
<thead>
<tr>
<th>Variable</th>
<th>MCAR Data (pairwise deletion)</th>
<th>Complete Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ</td>
<td>105.4</td>
<td>100</td>
</tr>
<tr>
<td>Performance</td>
<td>10.7</td>
<td>10.35</td>
</tr>
</tbody>
</table>

- Estimated fixed effects:

```
Solution for Fixed Effects

Effect variable Estimate Standard Error DF t Value Pr > |t|
Intercept variable IQ 9.8487 0.7098 19 13.88 <.0001
variable Performance MAR 90.1513 2.6734 19 33.72 <.0001
```

- Means – IQ = 90.15 + 9.85 = 100; Performance = 9.85
• Given the structure of the missing data, the standard errors of the estimated parameters may be computed differently
 - Standard errors come from \(-1\) * inverse information matrix
 - Information matrix = matrix of second derivatives = hessian

• Several versions of this matrix exist
 - Some based on what is expected under the model
 - The default in SAS – good only for MCAR data
 - Some based on what is observed from the data
 - Empirical option in SAS – works for MAR data (only for fixed effects)

• Implication: some SEs may be biased if data are MAR
 - May lead to incorrect hypothesis test results
 - Correction needed for likelihood ratio/deviance test statistics
 - Not available in SAS; available for some models in Mplus
When ML Goes Bad…

- For linear models with missing dependent variable(s) PROC MIXED and almost every other stat package works great
 - ML “skips” over the missing DVs in the likelihood function, using only the data you have observed

- For linear models with missing independent variable(s), PROC MIXED and almost every other stat package uses list-wise deletion
 - Gives biased parameter estimates under MAR
Options for MAR for Linear Models with Missing Independent Variables

1. Use ML Estimators and hope for MCAR

2. Rephrase IVs as DVs
 - In SAS: hard to do, but possible for some models
 - Dummy coding, correlated random effects
 - Rely on properties of how correlations/covariances are related to linear model coefficients β
 - In Mplus: much easier...looks more like a structural equation model
 - Predicted variables then function like DVs in MIXED

3. Impute IVs (multiple times) and then use ML Estimators
 - Not usually a great idea...but often the only option
ANOTHER EXAMPLE DATA SET
• Three variables were collected from a sample of 31 men in a course at NC State
 - **Oxygen**: oxygen intake, ml per kg body weight, per minute
 - **Runtime**: time to run 1.5 miles in minutes
 - **Runpulse**: heart rate while running

• The research question: how does oxygen intake vary as a function of exertion (running time and running heart rate)

• The problem: some of the data are missing
Descriptive Statistics of Missing Data

- Descriptive statistics of our data:

```
The MEANS Procedure

Variable       Mean       Std Dev     N
Oxygen         47.1161786  5.4130470   28
RunTime        10.6882143 1.3798794   28
RunPulse       171.8636364 10.1432382  22
```

- Patterns of missing data:

```
The FREQ Procedure

MissingPattern  Frequency  Percent  Cumulative Frequency  Cumulative Percent
None Missing    21         67.74     21                    67.74
Pulse Missing   4          12.90     25                    80.65
Time and Pulse Missing  3     9.68      28                   90.32
Oxygen Missing  1          3.23      29                   93.55
Oxygen and Pulse Missing  2     6.45      31                  100.00
```
Comparing Missing and Not Missing

Oxygen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>47.1161786</td>
<td>5.4130470</td>
<td>28</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.7020000</td>
<td>1.3943368</td>
<td>25</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.6666667</td>
<td>10.3505233</td>
<td>21</td>
</tr>
</tbody>
</table>

RunTime

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>46.4747200</td>
<td>5.0578561</td>
<td>25</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6882143</td>
<td>1.3798794</td>
<td>28</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

RunPulse

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>52.4616667</td>
<td>6.3700017</td>
<td>3</td>
</tr>
<tr>
<td>RunTime</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>RunPulse</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
</tbody>
</table>

Pulse Rate

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>46.3538095</td>
<td>5.4778395</td>
<td>21</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.8613636</td>
<td>1.4576997</td>
<td>22</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>49.4032857</td>
<td>4.8678064</td>
<td>7</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.0533333</td>
<td>0.8612936</td>
<td>6</td>
</tr>
<tr>
<td>RunPulse</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
</tbody>
</table>
HOW NOT TO HANDLE MISSING DATA
Bad Ways to Handle Missing Data

- Dealing with missing data is important, as the mechanisms you choose can dramatically alter your results.

- This point was not fully realized when the first methods for missing data were created.
 - Each of the methods described in this section should never be used.
 - Given to show perspective – and to allow you to understand what happens if you were to choose each.
Deletion Methods

• Deletion methods are just that: methods that handle missing data by deleting observations
 - Listwise deletion: delete the entire observation if any values are missing
 - Pairwise deletion: delete a pair of observations if either of the values are missing

• Assumptions: Data are MCAR

• Limitations:
 - Reduction in statistical power if MCAR
 - Biased estimates if MAR or MNAR
• Listwise deletion discards *all* of the data from an observation if one or more variables are missing

• Most frequently used in statistical software packages that are not optimizing a likelihood function (need ML)

• In linear models:
 - SAS GLM list-wise deletes cases where *IVs* or *DV*s are missing
Listwise Deletion Example

- If you wanted to predict Oxygen from Running Time and Pulse Rate you could:
 - Start with one variable (running time):

 ![Dependent Variable: Oxygen

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	442.6707707	442.6707707	59.44	<.0001
Error	23	171.2950243	7.4476098		
Corrected Total	24	613.9657950			
 - Then add the other (running time + pulse rate):

 ![Dependent Variable: Oxygen

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	449.4733700	224.7366850	26.85	<.0001
Error	18	150.6611373	8.3700632		
Corrected Total	20	600.1345072			

- The nested-model comparison test cannot be formed
 - Degrees of freedom error changes as missing values are omitted
Pairwise Deletion

- Pairwise deletion discards a pair of observations if either one is missing
 - Different from listwise: uses more data (rest of data not thrown out)

- Assumes: MCAR

- Limitations:
 - Reduction in statistical power if MCAR
 - Biased estimates if MAR or MNAR

- Can be an issue when forming covariance/correlation matrices
 - May make them non-invertible, problem if used as input into statistical procedures
Pairwise Deletion Example

- Covariance Matrix from PROC CORR (see the different DF):

```
3 Variables: Oxygen   RunTime   RunPulse

Variances and Covariances
Covariance / Row Var Variance / Col Var Variance / DF

<table>
<thead>
<tr>
<th></th>
<th>Oxygen</th>
<th>RunTime</th>
<th>RunPulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>29.3010776</td>
<td>-5.9882853</td>
<td>-19.5021167</td>
</tr>
<tr>
<td></td>
<td>29.3010776</td>
<td>25.5819081</td>
<td>30.0067254</td>
</tr>
<tr>
<td></td>
<td>29.3010776</td>
<td>1.9441750</td>
<td>107.1333333</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>RunTime</td>
<td>-5.9882853</td>
<td>1.9040671</td>
<td>3.6559091</td>
</tr>
<tr>
<td></td>
<td>1.9441750</td>
<td>1.9040671</td>
<td>2.1248885</td>
</tr>
<tr>
<td></td>
<td>25.5819081</td>
<td>1.9040671</td>
<td>102.8852814</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>RunPulse</td>
<td>-19.5021167</td>
<td>3.6559091</td>
<td>102.8852814</td>
</tr>
<tr>
<td></td>
<td>107.1333333</td>
<td>102.8852814</td>
<td>102.8852814</td>
</tr>
<tr>
<td></td>
<td>30.0067254</td>
<td>2.1248885</td>
<td>102.8852814</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>
```
Single Imputation Methods

- **Single imputation** methods replace missing data with some type of value
 - **Single**: one value used
 - **Imputation**: replace missing data with value

- Upside: can use entire data set if missing values are replaced

- Downside: biased parameter estimates and standard errors (even if missing is MCAR)
 - Type-I error issues

- Still: never use these techniques
Unconditional Mean Imputation

- Unconditional mean imputation replaces the missing values of a variable with its estimated mean
 - Unconditional = mean value without any input from other variables
- Example: missing Oxygen = 47.1; missing RunTime = 10.7; missing RunPulse = 171.9

Before Single Imputation:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>47.1161786</td>
<td>5.4130470</td>
<td>28</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6882143</td>
<td>1.3798794</td>
<td>28</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

After Single Imputation:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>47.1146129</td>
<td>5.1352696</td>
<td>31</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6893548</td>
<td>1.3090733</td>
<td>31</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8741935</td>
<td>8.4864585</td>
<td>31</td>
</tr>
</tbody>
</table>

- Notice: uniformly smaller standard deviations
Conditional Mean Imputation (Regression)

• Conditional mean imputation uses regression analyses to impute missing values
 - The missing values are imputed using the predicted values in each regression (conditional means)

• For our data we would form regressions for each outcome using the other variables
 - OXYGEN = $\beta_{01} + \beta_{11} *$RUNTIME + $\beta_{21} *$PULSE
 - RUNTIME = $\beta_{02} + \beta_{12} *$OXYGEN + $\beta_{22} *$PULSE
 - PULSE = $\beta_{03} + \beta_{13} *$OXYGEN + $\beta_{23} *$RUNTIME

• More accurate than unconditional mean imputation
 - But still provides biased parameters and SEs
Stochastic Conditional Mean Imputation

- Stochastic conditional mean imputation adds a random component to the imputation
 - Representing the error term in each regression equation
 - Assumes MAR rather than MCAR

- Again, uses regression analyses to impute data:
 - \(\text{OXYGEN} = \beta_{01} + \beta_{11} \cdot \text{RUNTIME} + \beta_{21} \cdot \text{PULSE} + \text{Error} \)
 - \(\text{RUNTIME} = \beta_{02} + \beta_{12} \cdot \text{OXYGEN} + \beta_{22} \cdot \text{PULSE} + \text{Error} \)
 - \(\text{PULSE} = \beta_{03} + \beta_{13} \cdot \text{OXYGEN} + \beta_{23} \cdot \text{RUNTIME} + \text{Error} \)

- **Error** is random: drawn from a normal distribution
 - Zero mean and variance equal to residual variance \(\sigma^2_\varepsilon \) for respective regression
Imputation by Proximity: Hot Deck Matching

• Hot deck matching uses real data – from other observations as its basis for imputing

• Observations are “matched” using similar scores on variables in the data set
 ➢ Imputed values come directly from matched observations

• Upside: Helps to preserve univariate distributions; gives data in an appropriate range

• Downside: biased estimates (especially of regression coefficients), too-small standard errors
Scale Imputation by Averaging

• In psychometric tests, a common method of imputation has been to use a scale average rather than total score
 ➢ Can re-scale to total score by taking # items * average score

• Problem: treating missing items this way is like using person mean
 ➢ Reduces standard errors
 ➢ Makes calculation of reliability biased
Longitudinal Imputation: Last Observation Carried Forward

• A commonly used imputation method in longitudinal data has been to treat observations that dropped out by carrying forward the last observation
 ➢ More common in medical studies and clinical trials

• Assumes scores do not change after dropout – bad idea
 ➢ Thought to be conservative

• Can exaggerate group differences
 ➢ Limits standard errors that help detect group differences
Why Single Imputation Is Bad Science

• Overall, the methods described in this section are not useful for handling missing data

• If you use them you will likely get a statistical answer that is an artifact
 ➢ Actual estimates you interpret (parameter estimates) will be biased (in either direction)
 ➢ Standard errors will be too small
 • Leads to Type-I Errors

• Putting this together: you will likely end up making conclusions about your data that are wrong
WHAT TO DO WHEN ML WON’T GO: MULTIPLE IMPUTATION
Multiple Imputation

- Rather than using single imputation, a better method is to use multiple imputation
 - The multiply imputed values will end up adding variability to analyses – helping with biased parameter and SE estimates

- Multiple imputation is a mechanism by which you “fill in” your missing data with “plausible” values
 - End up with multiple data sets – need to run multiple analyses
 - Missing data are predicted using a statistical model using the observed data (the MAR assumption) for each observation

- MI is possible due to statistical assumptions
 - The most often used assumption is that the observed data are multivariate normal
 - We will focus on this today – and expand upon it on Friday
Multiple Imputation Steps

1. The missing data are filled in a number of times (say, \(m \) times) to generate \(m \) complete data sets

2. The \(m \) complete data sets are analyzed using standard statistical analyses

3. The results from the \(m \) complete data sets are combined to produce inferential results
Distributions: The Key to Multiple Imputation

• The key idea behind multiple imputation is that each missing value has a **distribution** of likely values
 ➢ The distribution reflects the uncertainty about what the variable may have been

• Multiple imputation can be accomplished using variables outside an analysis
 ➢ All contribute to multivariate normal distribution
 ➢ Harder to justify why un-important variables omitted

• Single imputation, by any method, disregards the uncertainty in each missing data point
 ➢ Results from singly imputed data sets may be biased or have higher Type-I errors
Multiple Imputation in SAS

- SAS has a pair of procedures for multiple imputation:
 - PROC MI: generates multiple complete data sets
 - PROC MIANALYZE: analyzes the results of statistical analyses with imputed data sets

- Most frequent assumption SAS uses is that data are multivariate normal

- Not MVN? Mplus provides imputation options
IMPUTATION PHASE
PROC MI uses a variety of methods depending on the type of missing data present

- Monotone missing pattern: ordered missingness – if you order your variables sequentially, only the tail end of the variables collected is missing
 - Multiple methods exist for imputation

- Arbitrary missing pattern: missing data follow no pattern
 - Most typical in data
 - Markov Chain Monte Carlo assuming MVN is used
Multivariate Normal Data

• The MVN distribution has several nice properties

• In SAS PROC MI, multiple imputation of arbitrary missing data takes advantage of the MVN properties

• Imagine we have N observations of V variables from a MVN:
 \[Y_{(N \times V)} \sim N_V(\mu, \Sigma) \]

• The property we will use is the conditional distribution of MVN variables
 - We will examine the conditional distribution of missing data given the data we have observed
The conditional distribution of sets of variables from a MVN is also MVN
 ➢ Used as the data-generating distribution in PROC MI

If we were interested in the distribution of the first q variables, we partition three matrices:

- The data: $\begin{bmatrix} Y_{(N \times q)} & X_{(N \times V-q)} \end{bmatrix}$
- The mean vector: $\begin{bmatrix} \mu_Y: (q \times 1) \\ \mu_X: (V-q \times 1) \end{bmatrix}$
- The covariance matrix: $\begin{bmatrix} \Sigma_{YY}: (q \times q) & \Sigma_{YX}: (q \times V-q) \\ \Sigma_{XY}: (V-q \times q) & \Sigma_{XX}: (V-q \times V-q) \end{bmatrix}$
The conditional distribution of Y given the values of $X = x$ is then:

$$Y|X \sim N_q(\mu^*, \Sigma^*)$$

Where (using our partitioned matrices):

$$\mu^* = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x' - \mu_X)$$

And:

$$\Sigma^* = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$
Example from our Data

• From estimates with missing data:

\[
\bar{y} = \begin{bmatrix} 47.1 \\ 10.7 \\ 171.9 \end{bmatrix};
S = \begin{bmatrix} 29.3 & -6.0 & -19.5 \\ -6.0 & 1.9 & 3.7 \\ -19.5 & 3.7 & 102.9 \end{bmatrix}
\]

• For observation #4 (missing oxygen): \(x = [11.96 \ 176]\)
 ➢ We wish to impute the first observation (oxygen) conditional on the values of runtime and pulse

• Assuming MVN, we get the following sub-matrices:

\[
\bar{x}_Y = [47.1];
\bar{x}_X = \begin{bmatrix} 10.7 \\ 171.9 \end{bmatrix}
\]

\[
S_{YY} = [29.3];
S_{YX} = \begin{bmatrix} -6.0 & -19.5 \end{bmatrix};
S_{XY} = \begin{bmatrix} -6.0 \\ -19.5 \end{bmatrix};
\]

\[
S_{XX} = \begin{bmatrix} 1.9 & 3.7 \\ 3.7 & 102.9 \end{bmatrix};
S_{XX}^{-1} = \begin{bmatrix} .56 & -.02 \\ -.02 & .01 \end{bmatrix}
\]
Imputation Distribution

• The imputed value for Oxygen for observation #4 is drawn from a $N_1(43.0, 9.8)$:

Mean:

$$\bar{y}^* = \bar{x}_Y + S_{YX} S_{XX}^{-1} (x' - \bar{x}_x) = \begin{bmatrix} 47.1 \end{bmatrix} + \begin{bmatrix} -6.0 & -19.5 \end{bmatrix} \begin{bmatrix} .56 & -.02 \\ -.02 & .01 \end{bmatrix} \begin{bmatrix} 11.96 \\ 176 \end{bmatrix} - \begin{bmatrix} 10.7 \end{bmatrix}$$

$$= 43.0$$

Variance:

$$S^* = S_{YY} - S_{YX} S_{XX}^{-1} S_{XY}$$

$$= \begin{bmatrix} 29.3 \end{bmatrix} - \begin{bmatrix} -6.0 & -19.5 \end{bmatrix} \begin{bmatrix} .56 & -.02 \\ -.02 & .01 \end{bmatrix} \begin{bmatrix} -6.0 \\ -19.5 \end{bmatrix}$$

$$= 9.8$$
Using the MVN for Missing Data

• If we consider our missing data to be Y, we can then use the result from the last slide to generate imputed (plausible) values for our missing data.

• Data generated from a MVN distribution is fairly common and “easy” to do computationally.

• However....
The Problem: True μ and Σ are Unknown

- Problem: the true mean vector and covariance matrix for our data is unknown
 - We only have sample estimates
 - Sample estimates have sampling error
 - The mean vector has a MVN distribution
 - The sample covariance matrix has a (scaled) Wishart distribution
 - Missing data complicate the situation by providing even fewer observations to estimate either parameter

- The example from before used one estimate (but that is unlikely to be correct)
 - It used pairwise deletion
The PROC MI Solution

- PROC MI: use MCMC to estimate data and parameters simultaneously:

Step 0: Create starting value estimates for μ and Σ: $(\mu_{t-1}=0, \Sigma_{t-1}=0)$

Iterate t times through:

Step 1: Using μ_{t-1}, Σ_{t-1} generate the missing data from the conditional MVN (conditional on the observed values for each case)

Step 2: Using the imputed and observed data, draw a new μ_t, Σ_t from the MVN and Wishart distributions, respectively
The Process of Imputation

• The iterations take “a while” to reach a steady state – stable values for the distribution of μ_t, Σ_t
 - The burn in period

• After this period, you can take sets of imputed data to be used in your multiple analyses
 - The sets should be taken with “enough” iterations in between so as to not be highly correlated
 - The thinning interval
Using PROC MI

- PROC MI Syntax:

```sas
*IMPUTATION PHASE:;
*USING PROC MI TO IMPUTE DATA:;
PROC MI DATA=WORK.fitmiss OUT=WORK.fitimpute NIMPUTE=30 SEED=10292012;
   MCMC CHAIN=SINGLE DISPLAYINIT INITIAL=EM(ITPRINT) PLOTS=ALL
   OUTITER=WORK.outiter OUTTEST=WORK.outest;
   VAR oxygen runtime runpulse;
RUN;
```

- More often than not, the output of MI does not have much useful information
 - Must assume convergence of mean vector and covariance matrix – but limited statistics to check convergence

- Of interest is the new data set (WORK.fitimpute)
 - Here it contains 30 imputations for each missing variable
 - Need to run the regression 30 times – Analysis and Pooling Phase
MCMC Trace Plots – Use for Checking Convergence
Inspecting Imputed Values

- To demonstrate the imputed values, look at the histogram of the 30 values for observation 4:
Resulting Data Sets

- The new data sets are all stacked on top of each other
- Analyses now must add a line that says BY so each new data set has its own analysis
MULTIPLE IMPUTATION: ANALYSIS PHASE
Once you run PROC MI, the next step is to use each of the imputed data sets in its own analysis:
 - Called the analysis phase
 - For our example, that would be 30 times

The multiple analyses are then compiled and processed into a single result:
 - Yielding the answers to your analysis questions (estimates, SEs, and P-values)

GOOD NEWS: SAS will automate all of this for you
Analysis Phase

- Analysis Phase: run the analysis on all imputed data sets

```plaintext
*ANALYSIS PHASE:
PROC MIXED DATA=WORK.fitimpute METHOD=ML COVTEST NOPROFILE ITDETAILS IC ASYCOV;
BY _IMPUTATION_
MODEL oxygen = runtime runpulse / SOLUTION COVB;
ODS OUTPUT SolutionF=WORK.FixedEffects CovB=WORK.CovMatrices;
RUN;
```

- Syntax runs for each data set (BY _IMPUTATION_)
- The ODS OUTPUT line saves information needed in the pooling phase:
 - Parameter estimates (to make parameter estimates)
 - SolutionF=WORK.fixedeffects
 - Asymptotic covariance matrix of the fixed effects \((X^T V^{-1} X)^{-1}\)
 - CovB=WORK.CovMatrices
Saving Information from Other SAS PROCs

- Because of the various number of PROC types SAS implements, there are a variety of difference commands you must use if you are using Multiple Imputation in SAS.

- The SAS User’s Group document by Yuan posted on our website outlines the varying ways to do so:
 - Although, some will not work without a reference to the SAS 9.3 manual.
MULTIPLE IMPUTATION:
POOLING PHASE
Pooling Parameters from Analyses of Imputed Data Sets

• In the pooling phase, the results are pooled and reported

• For parameter estimates, the pooling is straightforward
 ➢ The estimated parameter is the average parameter value across all imputed data sets
 ▶ For our example the average intercept, slope for runtime, and slope for runpulse are taken over the 30 imputed data sets and analyses

• For standard errors, pooling is more complicated
 ➢ Have to worry about sources of variation:
 ▶ Variation from sampling error that would have been present had the data not been missing
 ▶ Variation from sampling error resulting from missing data
Pooling Standard Errors Across Imputation Analyses

• Standard error information comes from two sources of variation from imputation analyses (for \(m \) imputations)

• Within Imputation Variation:

\[
V_W = \frac{1}{m} \sum_{i=1}^{m} SE_i^2
\]

• Between Imputation Variation (here \(\theta \) is an estimated parameter from an imputation analysis):

\[
V_B = \frac{1}{m-1} \sum_{i=1}^{m} (\hat{\theta}_i - \overline{\theta})^2
\]

• Then, the total sampling variance is:

\[
V_T = V_W + V_B + \frac{V_B}{M}
\]

• The subsequent (imputation pooled) SE is

\[
SE = \sqrt{V_T}
\]
Pooling Phase in SAS: PROC MIANALYZE

- SAS PROC MIANALYZE conducts the pooling phase of imputations: no calculations are needed

```sas
*POOLING PHASE:;
PROC MIANALYZE PARMS=WORK.fixedeffects CovB(EFFECTVAR=ROWCOL)=Work.CovMatrices EDF=28;
MODELEFFECTS Intercept RunTime RunPulse;
RUN;
```

- The parameter data set, the asymptotic covariance matrix dataset, and the number of error degrees of freedom are all input

- The MODELEFFECTS line combs through the input data and conducts the pooling

- NOTE: different PROC lines have different input values. SEE: http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#mianalyze_toc.htm
Parameter Estimates – With Hypothesis Test P-Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std Error</th>
<th>95% Confidence Limits</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>92.129564</td>
<td>9.672059</td>
<td>71.81834 - 112.4408</td>
<td>18.112</td>
</tr>
<tr>
<td>RunTime</td>
<td>-3.055738</td>
<td>0.396603</td>
<td>-3.89124 - 2.2202</td>
<td>18.599</td>
</tr>
<tr>
<td>RunPulse</td>
<td>-0.074091</td>
<td>0.056855</td>
<td>-0.19327 - 0.0451</td>
<td>18.594</td>
</tr>
</tbody>
</table>

| Parameter | Minimum | Maximum | Theta0 | Parameter=Theta0 | Pr > |t| |
|------------|---------|---------|--------|------------------|-------|---|
| Intercept | 83.042973 | 101.702192 | 0 | 9.53 | < .0001 |
| RunTime | -3.409403 | -2.709447 | 0 | -7.67 | < .0001 |
| RunPulse | -0.132395 | -0.003353 | 0 | -1.30 | 0.2084 |

Variances:

See Next Slides
Additional Pooling Information

- The decomposition of imputation variance leads to two helpful diagnostic measures about the imputation:

- **Fraction of Missing Information:** $FMI = \frac{V_B + \frac{V_B}{m}}{V_T}$
 - Measure of influence of missing data on sampling variance
 - Example: intercept = 0.28; runtime = .26; runpulse = .26
 - ~27% of parameters variance attributable to missing data

- **Relative Increase in Variance:** $RIV = \frac{V_B + \frac{V_B}{m}}{V_W} = \frac{FMI}{1 - FMI}$
 - Another measure of influence of missing data on sampling variance
 - Example: intercept = 0.38; runtime = .35; runpulse = .35
ISSUES WITH IMPUTATION
Common Issues that can Hinder Imputation

- **MCMC Convergence**
 - Need “stable” mean vector/covariance matrix

- **Non-normal data: counts, skewed distributions, categorical (ordinal or nominal) variables**
 - Mplus is a good option
 - Some claim it doesn’t matter as much with many imputations

- **Preservation of model effects**
 - Imputation can strip out effects in data
 - Interactions are most difficult – form as auxiliary variable

- **Imputation of multilevel data**
 - Differing covariance matrices
Number of Imputations

- The number of imputations (m from the previous slides) is important: bigger is better
 - Basically, run as many as you can (100s)

- Take a look at the SEs for our parameters as I varied the number of imputations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$m = 1$</th>
<th>$m = 10$</th>
<th>$m = 30$</th>
<th>$m = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RunTime</td>
<td>0.366</td>
<td>0.386</td>
<td>0.399</td>
<td>0.389</td>
</tr>
<tr>
<td>RunPulse</td>
<td>0.053</td>
<td>0.053</td>
<td>0.057</td>
<td>0.056</td>
</tr>
</tbody>
</table>
WRAPPING UP
Wrapping Up

• Missing data are common in statistical analyses

• They are frequently neglected
 - MNAR: hard to model missing data and observed data simultaneously
 - MCAR: doesn’t often happen
 - MAR: most missing imputation assumes MVN

• More often than not, ML is the best choice
 - Software is getting better at handling missing data
 - We will discuss how ML works next week