Help with Unit 3 Exam Demo

Two pages of the Exam 3 Demo (the kBG page 3 and the kChi page 4) have a kind of video file ".swf" that many operating systems and browsers no longer support.

So, here are two options"

#1 here's a link to where you can download an app that will play the the files.

The app was created by the folks who invented this file type (Adobe) and "howtogeek" has been around a long time -- safe stuff! I got the app downloaded and running quickly (and I'm not great at things like that!)

https://www.howtogeek.com/438141/how-to-play-adobe-flash-swf-files-outside-your-web-browser/

#2 the pages that follow take you through those items (b, d, e & h) of each page.

Page 3 – K-BG ANOVA

and below and

^(b) To find the LSDmmd N =		, the nu	umber of con	ditions is
	and n is		. The dferr	or is
	and the MSerror is			(rounded to 2 decimals).
Using these values the L	SDmmd is found to b	e		(rounded to 2 decimals).

We'll need these picture and the Computator to do this!

					1	
					2	
					3	En
	Descr	iptives				E
	00001	ipureo			4	
problems					5	
	1					Sele
			Std.		6	
	Ν	Mean	Deviation		7	
cogbeh	43	19.0204	5.68950		8	
					9	
meds	32	20.4894	6.51848		10	
cb-meds	48	15.4733	6.05429		11	
Total	123	18.0183	6.36912		12	
12				2	13	

ANOVA

problems	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	549.492	2	274.746	7.494	.002
Within Groups	4399.525	120	36.663	Manager and State	
Total	4949.017	122			

N is given in the "Descriptives" -- the total number of people in all conditions = 123

- k is the number of contions cogbeh, meds & cb-meds \rightarrow so k = 3
- n is the average number of participants in each condition $\rightarrow k = N / k = 123 / 3 = 41$ remember: if the answer isn't a whole number, use the decimal part in the computation of the LSDmmd

dferror is in the "df" column and the "Within Groups" row → 120 remember: if the exact value isn't among the drop-down values in the computator, round down to the next lower value

MSerror is in the "Mean Square" column and the "Within Groups" row \rightarrow MSerror is 36.66

We plug those numbers in to the Computator and get the LSDmmd \rightarrow 2.65

(d) The effect size for the pairwise comparison of the cogbeh and meds conditions is

the effect size

Select the type of ANOVA design => Between Groups

Enter mean #1 =>

Enter mean #2 =>

20.49

15.47

for the pairwise comparsion of cogbeh and cbmeds is

and the effect size for the pairwise

comparison of meds and cbmeds is

(use 2 decimals to calculate and report the effect size - always

ANOVA

19.02

15.47

report the effect size as positive). 🍙

We'll need these picture and the Computator to do this!

Descriptives

Select the type of ANOVA design => Between Groups

Enter mean #1 =>

Enter mean #2 =>

	N	Mean	Std. Deviation		Sum of Squares	df	Mean Square	F	Sig.
cogbeh	43	19.0204	5.68950	Between Groups	549.492	2	274.746	7.494	.002
meds	32	20.4894	6.51848	Within Groups	4399.525	120	36.663		
cb-meds	48	15.4733	6.05429	Total	4949.017	122			
Total	123	18.0183	6.36912	C.					

Select the type of ANOVA design => Between Groups

Enter mean #1 =>

Enter mean #2 =>

Enter mean #2	00.40				
Enter mean #2 =>		Enter MSe (Mean Square Error) =>	36.66	Enter MSe (Mean Square Error) =>	36.66
Enter MSe (Mean Square Error) =>	36.66				
		r =	0.281	r =	0.383
r=	0.121	d =	0.586	d =	0.829
d =	0.243				
		↓ pr_means-> r & d ChiS (+ : • •	↓ pr_means-> r & d ChiS (
↓ pr_means-> r & d ChiS (÷ : • •		•		

For these three condtions, there would be three pairwise comparison: #2 cogbeh vs cb-meds #1 Cogbeh vs meds #3 meds vs. cb-meds

19.02

20.49

For each pairwise comparison we enter the means for the two groups and the MSerror.

MSerror is in the "Mean Square" column and the "Within Groups" row \rightarrow MSerror is 36.66

Above shows how the computator would be used for each of the three pairwise comparisons.

The answers (rounded to two decimals) would be

#1 Cogbeh vs meds r = .12#2 cogbeh vs cb-meds r = .28#3 meds vs. cb-meds r = .38

(e) For the pairwise comparison of the co	gnitive behavioral and the medical	ion conditions, based on the LSDmmd, the
probability of a Type I error would be	(Click for List)	the probability of a Type II error would be

(Click for List)

• and the probability of a Type III error would be a (Clie

(Click for List)

- 🧔

We're comparing cogbeh vs. meds, with means of 19.02 & 20.49, so the mean difference is 1.47.

We calculated the LSDmmd in "b" above.

The mean difference of 1.47 Is less than the LSDmmd of 2.65, so we would Retain HO: for this particular pairwise comaprions. Now we can answer the question!

Having retained H0:, a Type I error and a Type II error are both "not possible"

To estimate the probability of making a Type II error, we have to do the "dance of the Type II error"

We need r & S to go to the power table to get the power of the study. From that power estimate, we'll estimate the probability of a Type II error.

We know that r = .12 (we found that in "d" above)

We know that n = 41 (we found that in "b" above). S = n * 2 so S = 82

Now we need the power table!

r? ? power	.10	.15	.20	.25	.30	.35	.40	.45	.50	.55	.60	.65	.70
.20	124	32	21	15	14	13	11	9	7	5			
.30	208	93	53	34	24	18	14	11	9	8	7	6	5
.40	296	132	74	47	33	24	19	15	12	10	8	7	6
.50	382	170	95	60	42	30	23	18	14	12	9	8	7
.60	488	257	143	90	62	45	34	24	20	16	13	11	9
.70	613	300	167	105	72	52	39	29	23	28	15	12	10
.80	781	343	191	120	82	59	44	33	26	20	16	13	11
.90	1045	459	255	160	109	78	58	44	34	27	21	17	13

We would round r = .12 to r = .10 to use the power table.

For r = .10 & S = 82, there isn't even an entry on the table! 20% power for r=.10 needs 124 folks.

1 – power = probability of a Type II error. So, we have less than 20% power which translates to more than 80% chance of a Type II error

, , , , ,	want to risk only a 20% chance of missing an effect. Estimate the appropriate smallest pairwise effect size from the current study. The number of participants in
that pairwise comparison should be (S) =	, the number of participants in each condition of the study
should be (n) =	and the total number of participants in the study should be (N) =
- 💑	

So, last one...

The pairwise comparison with the smallest effect is the Cogbeh vs meds r = .12

r? ? power	.10	.15	.20	.25	.30	.35	.40	.45	.50	.55	.60	.65	.70
.20	124	32	21	15	14	13	11	9	7	5			
.30	208	93	53	34	24	18	14	11	9	8	7	6	5
.40	296	132	74	47	33	24	19	15	12	10	8	7	6
.50	382	170	95	60	42	30	23	18	14	12	9	8	7
.60	488	257	143	90	62	45	34	24	20	16	13	11	9
.70	613	300	167	105	72	52	39	29	23	28	15	12	10
.80	781	343	191	120	82	59	44	33	26	20	16	13	11
.90	1045	459	255	160	109	78	58	44	34	27	21	17	13

We'd round that down to r = .10 to use the power table.

If we're willing to take a 20% risk of a Type II error, we will want 80% power.

For r = .10 & .80 power, we'd need S = 781 participants in the two conditions of that pairwise comparison.

With S = 781, then n = S/2 = 781/2 = 390.5, or 391 people in each condition of the study (rounding the fraction up).

With n = 391 and k = 3 conditions, then N = n * 3 = 391 * 3 = 1173 people in the whole study!

On to the Chi-square stuff on page 4...

Page 4 – k-group Chi-square

^(b) The pairwise comparison o	f the cogbeh vs. meds conditions has a	a Chi-square (rounded to 2 decimals) of	, for cogbeh vs. cb-
meds has a Chi-square (ro	unded to 2 decimals) of	and the comparison of meds and cbmeds	has a Chi-square (rounded to 2
decimals) of	. The Chi-square critical val	lue for all these pairwise comparisons (rounded to 2 d	lecimals) is
	.		

To do this, we'll need the computator for the first three.

For each pairwise, we enter the cell frequencies for

Cogbeh vs. Meds

Effect S	Size (r) for Pairwis	e Chi-squ	are Compar	isons
Insert free	uencies for the 2x2	31	11	
	comparison =>	12	21	
	Chi	-square =	10.593	
		p =	0.0011352	
		r =	0.376	
p-value	ChiSq Critical			
0.05	3.84			
0.005	C 00			

Meds vs. cb-meds

Effect Size (r) for Pairwise Chi-square Comparisons

Insert free	uencies for the 2x2	11	23		
	comparison =>	21	25	i	
	Ch	ni-square =	1.441		
		p =	0.230018		
		r =	0.134		
p-value	ChiSq Critical				
0.05	3.84				
0.005	E 00				

Cogbeh vs cb-meds

Effect	Size (r) for Pairwise	Chi-squ	are Compari	sons
Insert fre	quencies for the 2x2	31	23	
	comparison =>	12	25	
	Chi-s	quare =	5.495	
		p =	0.0190751	
		r =	0.246	
p-value	ChiSq Critical			

The critical value for a 2x2 Chi-square for testing at the conventional "uncorrected" p = .05 is always 3.84.

That value is shown in the computer.

0										
1	p-v	alue	ChiSq Critical							
2		0.05		3.84						
3		0.025		5.02						
4	(0.0167		5.73						-
	•	÷.,	ChiSq->r	pr	_chi>r	Ο.	(+) :	4	•
lea	dy		111	Γ	I P			-	+	100%

(d) The effect size for the pair	wise comparison of cogbeh	and meds is , the effect size for the pairwi	ise
comparsion of cogbeh and	cbmeds is	and the effect size for the pairwise comparison of meds a	nd
cbmeds is	(use 2 decimals	o calculate and report the effect size - always report the effect size a	as
positive). 💑			

The computator also calculates the effect size for each pairwise comparison. So, we got these values when we did "b".

The "trick" is to remember to collect these when you're doing "b" – I usually forget have to go back and do them again – aaarrrgghh!

Cogbeh vs. Meds

Effect S	Size (r) for Pairwi	ise Chi-squ	are Compa	risons
Insert free	quencies for the 2x2	31	11	
	comparison =>	12	21	
	Ch	i-square =	10.593	
		p =	0.0011352	
		r =	0.376	
p-value	ChiSq Critical			
0.05	3.84			
0.005	C 00			

Cogbeh vs cb-meds

Effect	Size (r) for Pairwise	e Chi-squa	are Compar	isons
Insert free	quencies for the 2x2	31	23	
	comparison =>	12	25	
	Chi-s	quare =	5.495	
		p =	0.0190751	
		r =	0.246	
p-value	ChiSq Critical			

Meds vs. cb-meds

Effect S	Size (r) for Pairwi	se Chi-squa	re Compa	risons
Insert free	uencies for the 2x2	11	23	
	comparison =>	21	25	
	Chi	-square =	1.441	
		p =	0.230018	
		r =	0.134	
p-value	ChiSq Critical			
0.05	3.84			
0.000	5.00	1		

(e) For the pairwise comparison of meds and cbmeds, based on the pairwise Chi-square, the probability of a Type I error would

be	(Click for List)	• 1	he probability of a Type II error v	voul	d b	be ((Click for List) •	and the
рго	bability of a Type III error would	be a	(Click for List)	۳				

For the pairwise comparison of meds and cbmeds, we retained the null hypothesis (p > .05). With that decision we can go to work on this question.

If we retain H0", then both a Type I Error and a Type III Error are "not possible".

To estimate the probability of making a Type II error, we have to do the "dance of the Type II error"

We need r & S to go to the power table to get the power of the study. From that power estimate, we'll estimate the probability of a Type II error.

We know that r = .13 (we found that in "d" above)

To calculate "S" we start with N=123 people in the whole study.

From that we calculate n = N / k = 123 / 3 = 41

And from that we can calculate S = n * 2 = 41 * 2 = 82

Now we need the power table!

r? ? power	.10	.15	.20	.25	.30	.35	.40	.45	.50	.55	.60	.65	.70
.20	124	32	21	15	14	13	11	9	7	5			
.30	208	93	53	34	24	18	14	11	9	8	7	6	5
.40	296	132	74	47	33	24	19	15	12	10	8	7	6
.50	382	170	95	60	42	30	23	18	14	12	9	8	7
.60	488	257	143	90	62	45	34	24	20	16	13	11	9
.70	613	300	167	105	72	52	39	29	23	28	15	12	10
.80	781	343	191	120	82	59	44	33	26	20	16	13	11
.90	1045	459	255	160	109	78	58	44	34	27	21	17	13

We would round r = .13 to r = .10 to use the power table.

For r = .10 & S = 82, there isn't even an entry on the table! 20% power for r=.10 needs 124 folks.

1 – power = probability of a Type II error. So, we have less than 20% power which translates to more than 80% chance of a Type II error

(h) We are planning a replication study and have decided that the pairwise comparison we are most interested in involves the cbmeds and cogbeh conditions. If we want sufficient power for this comparison, he number of participants in that pairwise

 comparison should be (S) =
 , the number of participants in each condition of the study should be

 (n) =
 and the total number of participants in the study should be (N) =

The effect size for the cb-meds and cogbeh pairwise comparison is r = .246.

We would round that to r = .25 to use the power table

r? ? power	.10	.15	.20	.25	.30	.35	.40	.45	.50	.55	.60	.65	.70
.20	124	32	21	15	14	13	11	9	7	5			
.30	208	93	53	34	24	18	14	11	9	8	7	6	5
.40	296	132	74	47	33	24	19	15	12	10	8	7	6
.50	382	170	95	60	42	30	23	18	14	12	9	8	7
.60	488	257	143	90	62	45	34	24	20	16	13	11	9
.70	613	300	167	105	72	52	39	29	23	28	15	12	10
.80	781	343	191	120	82	59	44	33	26	20	16	13	11
.90	1045	459	255	160	109	78	58	44	34	27	21	17	13

The problem does not mention a specific amount of power, nor a specific acceptable risk of a Type II error, so we would use the "industry standard" for power \rightarrow 80% power

For r = .25 & .80 power, we'd need S = 120 participants in the two conditions of that pairwise comparison.

With S = 120, then n = S / 2 = 120 / 2 = 60.

With n = 60 and k = 3 conditions, then N = n * 3 = 60 * 3 = 180 people in the whole study!