
Bivariate &/vs. Multivariate  

• Differences between correlations, simple regression 
weights & multivariate regression weights

• Patterns of bivariate & multivariate effects

• Proxy variables

• Multiple regression results to remember

It is important to discriminate among the information obtained 
from ...

• a simple correlation

tells the direction and strength of the linear relationship 
between two quantitative/binary variables

• a regression weight from a simple regression

tells the expected change (direction and amount) in the 
criterion for a 1-unit change in the predictor

• a regression weight from a multiple regression model

tells the expected change (direction and amount) in the 
criterion for a 1-unit change in that predictor, holding the 
value of all the other predictors constant

Correlation

r

For a quantitative predictor 

sign of r = the expected direction of change in Y as X increases

size of r = is related to the strength of that expectation

For a binary x with 0-1 coding

sign of r = tells which coded group X has higher mean Y 

size of r = is related to the size of that group Y mean difference



Simple regression

y’ =  bx + a raw score form

b -- raw score regression slope or coefficient

a -- regression constant or y-intercept 

For a quantitative predictor 

a =  the expected value of y if x = 0

b = the expected direction and amount of change in the 
criterion for a 1-unit increase in the

For a binary x with 0-1 coding

a = the mean of y for the group with the code value = 0 

b = the mean y difference between the two coded groups

raw score regression y’ = b1x1 + b2x2 + b3x3 + a
each b

• represents the unique and independent contribution of that 
predictor to the model

• for a quantitative predictor tells the expected direction and 
amount of change in the criterion for a 1-unit change in that 
predictor, while holding the value of all the other predictors 
constant

• for a binary predictor (with unit coding -- 0,1 or 1,2, etc.), tells 
direction and amount of group mean difference on the 
criterion variable, while holding the value of all the other 
predictors constant

a

• the expected value of the criterion if all predictors have  a value
of 0  

What influences the size of r, b & β

r  -- bivariate correlation    range = -1.00 to +1.00                              
-- strength of relationship with the criterion
-- sampling “problems” (e.g., range restriction)

b  (raw-score regression weights      range = -∞ to ∞
-- strength of relationship with the criterion
-- collinearity with the other predictors
-- differences between scale of predictor and criterion
-- sampling “problems” (e.g., range restriction)

β -- standardized regression weights    range = -1.00 to +1.00
-- strength of relationship with the criterion
-- collinearity with the other predictors
-- sampling “problems” (e.g., range restriction)

Difficulties of determining “more important contributors”
-- b is not very helpful - scale differences produce b differences     
-- β works better, but limited by sampling variability and 

measurement influences  (range restriction)
Only interpret “very large” β differences as evidence that one 
predictor is “more important” than another
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Venn diagrams representing r & b
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Remember that the b of each predictor represents the part of that 
predictor shared with the criterion that is not shared with any other 
predictor -- the unique contribution of that predictor to the model

bx1
bx2

bx3

Important Stuff !!!  There are two different reasons that a predictor might 
not be contributing to a multiple regression model...
• the variable isn’t correlated with the criterion
• the variable is correlated with the criterion, but is collinear with one or

more other predictors, and so, has no independent contribution
to the multiple regression model

y x1

x2

x3

X1 has a substantial r with the criterion and has a substantial b

x2 has a substantial r with the criterion but has a small b because it 
is collinear with x1

x3 has neither a substantial r nor substantial b



We perform both bivariate (correlation) and multivariate (multiple 
regression) analyses – because they tell us different things about 
the relationship between the predictors and the criterion…

Correlations (and bivariate regression weights) tell us about the 
“separate” relationships of each predictor with the criterion 
(ignoring the other predictors)

Multiple regression weights tell us about the relationship between 
each predictor and the criterion that is unique or independent from 
the other predictors in the model.

Bivariate and multivariate results for a given predictor don’t always 
agree – but there is a small number of distinct patterns…

Simple correlation with the criterion

- 0                               +

M
ul

tip
le

 re
gr

es
si

on
 w

ei
gh

t

+ 
   

   
   

   
   

   
   

0 
   

   
   

   
   

   
  -

Non-contributing –
probably because 

colinearity with 
one or more other 

predictors

Non-contributing –
probably because 

colinearity with 
one or more other 

predictors

Non-contributing –
probably because 

of weak 
relationship with 

the criterion

Bivariate 
relationship and 

multivariate 
contribution (to this 
model) have same 

sign

“Suppressor effect” –
no bivariate 

relationship but 
contributes (to this 

model) 

“Suppressor effect” –
no bivariate 

relationship but 
contributes (to this 

model) 

“Suppressor effect” –
bivariate relationship & 
multivariate contribution 

(to this model) have 
different signs

“Suppressor effect” –
bivariate relationship & 
multivariate contribution 

(to this model) have 
different signs

There are 5 patterns of bivariate/multivariate relationship

Bivariate 
relationship and 

multivariate 
contribution (to this 
model) have same 

sign

predictor age         UGPA         GRE    work hrs  #credits

r(p)               .11(.32)      .45(.01)       .38(.03)      -.21(.06)    .28(.04)

b(p) .06(.67)     1.01(.02)      .002(.22)    .023(.01) -.15(.03) 

Bivariate & Multivariate contributions – DV = Grad GPA

Bivariate relationship and multivariate contribution (to this model) 
have same sign

“Suppressor variable” – no bivariate relationship but contributes 
(to this model)

“Suppressor variable” – bivariate relationship & multivariate 
contribution (to this model) have different signs

Non-contributing – probably because colinearity with one or more 
other predictors

Non-contributing – probably because of weak relationship with the 
criterion



predictor #fish     #reptiles         ft2 #employees  #owners  

r(p)             -.10(.31)      .48(.01)       -.28(.04)       .37(.03)       -.08(.54)

b(p) -.96(.03)      1.61(.42)      1.02(.02)    1.823(.01)     -.65(.83) 

Bivariate & Multivariate contributions – DV = Pet Quality

#fish

#reptiles 

ft2

#employees

#owners

Proxy variables

Remember (again) we are not going to have experimental data!

The variables we have might be the actual causal variables influencing 
this criterion, or (more likely) they might only be correlates of those 
causal variables – proxy variables

Many of the “subject variables” that are very common in multivariate 
modeling are of this ilk…

• is it really “sex,” “ethnicity”, “age” that are driving the criterion – or is 
it all the differences in the experiences, opportunities, or other
correlates of these variables?

• is it really the “number of practices” or the things that, in turn, 
produced the number of practices that were chosen? 

Again, replication and convergence (trying alternative measure of 
the involved constructs) can help decide if our predictors are 
representing what we think the do!!

Proxy variables

In  sense, proxy variables are a kind of “confounds” because we are 
attributing an effect to one variable when it might be due to another.

We can take a similar effect to understanding proxys that we do to 
understanding confounds we have to rule out specific alternative 
explanations !!!

An example   r gender, performance = .4    Is it really gender?

Motivation, amount of preparation & testing comfort are some 
variables that have gender differences and are related to perf.

So, we run a multiple regression with all four as predictors.

If gender doesn’t contribute, then it isn’t gender but the other 
variables.

If gender contributes to that model, then we know that “gender” in 
the model is “the part of gender that isn’t motivation, preparation 
or comfort” but we don’t know what it really is….



As we talked about last time, collinearity among the multiple predictors can 
produce several patterns of bivariate-multivariate contribution.  There are three 
specific combinations you should be aware of (all of which are fairly rare, but 
can be perplexing if they aren’t expected)…

1. Multivariate Power -- sometimes a set of predictors none of 
which are significantly correlated with the criterion can be 
produce a significant multivariate model (with one or more 
contributing predictors) 

How’s that happen?

• The error term for the multiple regression  model and the test 
of each predictor’s b is related to 1-R2 of the model

• Adding predictors will increase the R2 and so lower the error 
term – sometimes leading to the model and 1 or more 
predictors being “significant”

• This happens most often when one or more predictors have 
“substantial” correlations, but the sample power is low

2. Null Washout -- sometimes a set of predictors with only one 
or two significant correlations to the criterion will produce a 
model that is not significant.  Even worse, those significantly 
correlated predictors may or may not be significant 
contributors to the non-significant model

How’s that happen?

• The F-test of the model R2 really                      
(mathematically) tests the average                           
contribution of all the predictors in the model 

• So, a model dominated by predictors that are not 
substantially correlated with the criterion might not have a 
large enough “average” contribution to be statistically 
significant

• This happens most often when the sample power is low and 
there are many predictors

R² /  k
F = ---------------------------------

(1 - R²) / (N - k - 1) 

3. Extreme collinearity -- sometimes a set of predictors all of 
which are significantly correlated with the criterion can be 
produce a significant multivariate model with one or more 
contributing predictors

How’s that happen?
•Remember that in a multiple 
regression model each predictors b 
weight reflects the unique contribution 
of that predictor in that model
•If the predictors are all correlated with 
the criterion but are more highly 
correlated with each other, each of 
their “overlap” with the criterion is 
shared with 1 or more other predictors 
and no predictor has much unique 
contribution to that very successful 
(high R2) model
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