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• Kinds of Causal Hypotheses
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Limitations of 2-cond Designs
• 2-cond designs work well to conduct basic treatment 

evaluations
– they allow us to investigate whether or not a specific 

treatment has “an effect”

– usually by comparing it to a “no treatment” control

– e.g., does a new treatment program work to help socially 
anxious clients (compared to no treatment)?

• However as research questions/hypotheses become 
more sophisticated and specific, we often require 
designs that have multiple IV conditions

“Kinds” of Conditions to Include in Research Designs 
Tx Conditions

• Ways treatment conditions differ
– amount of treatment

• receiving therapy once vs. twice each week
• getting 0, 1, 5 or 10 practice trials before testing

– kind of treatment
• receiving Cognitive vs. Gestalt clinical therapy
• whether or not there is feedback on practice trials

– combinations of treatment components
• receiving both “talk” therapy vs. “combined drug & talk” 

therapy
• receiving “10 practices without feedback” vs.     “2 

practices with feedback”
The “Secret” is to be sure the selection of conditions 
matches the research hypotheses you started with !!!



Different Kinds of “Control” Conditions 

• “No Treatment” control
– Asks if the Tx works “better than nothing”

• “Standard Tx” control
– Asks if the Tx works “better than usual”  

• “Best Practice” Control
– Asks if the Tx works “better than the best known”

• “Pseudo Tx” Control
– Asks if TX works “without a specific component”

The “Secret” is to be sure the selection of conditions matches the research 
hypotheses you started with !!!

An important point to remember...
Not every design needs a “no treatment control” group !!!!
Remember, a design needs to provide “an comparison of ap-
propriate conditions” to provide a test of the research hypothesis !!!
What would be the appropriate “control group” to answer each of the following ?

My new Tx works better than the currently 
used behavioral therapy technique

My new Tx works better than “no treatment”

My new Tx works because of the combo of 
the usual and new behavioral components

My new TX works better when given by a 
Ph.D. than by a Masters-level clinician

Group receiving the 
behavioral therapy.

Group receiving no 
treatment.

Groups receiving 
the Tx from the two 
types of clinicians.

The “Secret” is to be sure the selection of conditions matches the research 
hypotheses you started with !!!

Pseudo-Tx group

Causal Hypotheses for Multiple Condition Designs

Sometimes there is more than one component to a “treatment,” 
and so, there are multiple differences between the IV conditions.  
When this happens, you must distinguish..

Causal Hypotheses about “treatment comparisons” 
-- hypothesis that the difference between the DV 

means of the IV conditions is caused by the 
combination of treatment component differences

Causal Hypotheses about “identification of causal elements”
-- hypothesis that the difference between the DV 

means of the IV conditions is caused by a specific 
(out of two or more) treatment component difference 
(good use of pseudo-Tx controls)

The “Secret” is to be sure the condition comparison matches 
the specific type of causal research hypotheses !!!!



For example… I created a new treatment for social anxiety that  uses a 
combination of group therapy (requiring clients to get used to talking with other 
folks) and cognitive self-appraisal (getting clients to notice when they are and 
are not socially anxious).  Volunteer participants were randomly assigned to 
the treatment condition or a no-treatment control.  I personally conducted all 
the treatment conditions to assure treatment integrity. Here are my results 
using a DV that measures “social context tolerance”  (larger scores are 
better).

CxF(1,38) = 9.28, p = .001, Mse = 17.3
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“Here is evidence that the combination of group therapy & cognitive self-
appraisal increases social context tolerance.” ???

“ You can see that the treatment works because of the cognitive self-appraisal; 
the group therapy doesn’t really contribute anything.”

Which of the following statements will these 
results support?

Yep -- treatment comparison causal statement

Nope -- identification of causal element statement & we 
can’t separate the role of group therapy & self-appraisal 

Group therapy 
& self-appraisal

Same story... I created a new treatment for social anxiety that  uses a 
combination of group therapy (requiring clients to get used to talking with other 
folks) and cognitive self-appraisal (getting clients to notice when they are and 
are not socially anxious).  Volunteer participants were randomly assigned to the 
treatment condition or a no-treatment control.  I personally conducted all the 
treatment conditions to assure treatment integrity. 

What conditions would we need to add 
to the design to directly test the second 
of these causal hypotheses... 

The treatment works because of the cognitive 
self-appraisal; the group therapy doesn’t really 
contribute anything.”

No-treatment 
control

Group therapy 
& self-appraisal Group 

therapy
Self-

appraisal

No-treatment 
control

Group therapy 
& self-appraisal Group 

therapy
Self-

appraisal

Let’s keep going …

Here’s the design we decided upon.  Assuming the results from 
the earlier study replicate, we’d expect to get the means shown 
below.
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What means for the other 
two conditions would 
provide support for the RH:

The treatment works because of the 
cognitive self-appraisal; the group 
therapy doesn’t really contribute 
anything.”

25 52



Another example… The new on-line homework I’ve been using provides 
immediate feedback for a set of 20 problems.  To assess this new homework I 
compared it with the online homework I used last semester which 10 problems 
but no feedback.  I randomly assigned who received which homework and 
made sure each did the correct type.  The DV was the % score on a quiz 
given the day the homework was due.  Here are the results ...

Old HwF(1,42) = 6.54, p = .001, Mse = 11.12
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“Here is evidence that the new homework is more effective because it provides 
immediate feedback!”

“The new homework seems to produce better learning!”

Which of the following statements will these 
results support?

Yep -- treatment comparison causal statement

Nope -- identification of causal element statement -- with this design we can’t 
separate the role of feedback   and   number of problems 

New Hw

Same story... The new on-line homework I’ve been using provides immediate 
feedback for a set of 20 problems.  To assess this new homework I compared it 
with the online homework I used last semester which 10 problems but no 
feedback.  I randomly assigned who received which homework and made sure 
each did the correct type.  

What conditions would we need to 
add to the design to directly test the 
second of these causal hypotheses... 

“Here is evidence that the new 
homework is more effective because it 
provides immediate feedback!”

“Old Hw”
10 problems 
w/o feedback

“New Hw”
20 problems 
w/ feedback

20 problems
w/o feedback

10 problems 
w/ feedback

Hint: Start by asking what are the “differences” between the “new” and 
“old” homeworks -- what are the “components” of each treatment???

Let’s keep going …

Here’s the design we decided upon.  Assuming the results from 
the earlier study replicate, we’d expect to get the means shown 
below.

What means for the other 
two conditions would 
provide support for the RH:

“Here is evidence that the new 
homework is more effective because it 
provides immediate feedback!”

“Old Hw”
10 problems 
w/o feedback

“New Hw”
20 problems 
w/ feedback

20 problems
w/o feedback

10 problems 
w/ feedback

91 7275 89



H0: Tested by k-grp ANOVA
 Regardless of the number of IV conditions, the H0: 

tested using ANOVA (F-test) is …
– “all the IV conditions represent populations that have the 

same mean on the DV”
 When you have only 2 IV conditions, the F-test of this 

H0: is sufficient 
– there are only three possible outcomes …

T=C     T<C     T>C   & only one matches the RH
 With multiple IV conditions, the H0: is still that the IV 

conditions have the same mean DV…
T1 = T2 = C   but there are many possible patterns
– Only one pattern matches the Rh:

Omnibus F vs. Pairwise Comparisons
 Omnibus F

– overall test of whether there are any mean DV differences 
among the multiple IV conditions 

– Tests H0: that all the means are equal
 Pairwise Comparisons

– specific tests of whether or not each pair of IV conditions 
has a mean difference on the DV

 How many Pairwise comparisons ??
– Formula, with k = # IV conditions

# pairwise comparisons =  [k * (k-1)] / 2
– or just remember a few of them that are common

• 3 groups  = 3 pairwise comparisons
• 4 groups = 6 pairwise comparisons
• 5 groups = 10 pairwise comparisons

How many Pairwise comparisons – revisited !!

There are two questions, often with different answers…
1. How many pairwise comparisons can be computed for this 

research design?   
• Answer  [k * (k-1)] / 2
• But remember  if the design has only 2 conditions the 

Omnibus-F is sufficient; no pariwise comparsons needed

2. How many pairwise comparisons are needed to test the RH:?

• Must look carefully at the RH: to decide how many 
comparisons are needed

• E.g., The ShortTx will outperform the control, but not do as 
well as the LongTx

• This requires only 2 comparisons  

ShortTx vs. control        ShortTx vs. LongTx



Example  analysis of a multiple IV conditions design

For this design, F(2,27)=6.54, 
p =.005 was obtained.

Tx1           Tx2         Cx

50            40          35

We would then compute the pairwise mean differences.

Tx1 vs. Tx2  10 Tx1 vs. C  15 Tx2 vs. C   5

Say for this analysis the minimum mean difference is 7

Determine which pairs have significantly different means

Tx1 vs. Tx2            Tx1 vs. C         Tx2 vs. C

Sig Diff                 Sig Diff          Not Diff

The RH: was, “The treatments will be equivalent to each other, 
and both will lead to higher scores than the control.”

For this design, F(2,42)=4.54, 
p = .012 was obtained.

Tx1           Tx2         Cx

85            70          55

Compute the pairwise mean differences.

Tx1 vs. Tx2   ____     Tx1 vs. C  ____      Tx2 vs. C   ____

What to do when you have a RH:

Determine the pairwise comparisons, how the RH applied to 
each …

Tx1 Tx2           Tx1 C            Tx2 C  =                         >                       >

Cont.       Compute the pairwise mean differences.

Tx1 vs. Tx2   15 Tx1 vs. C  30 Tx2 vs. C   15

For this analysis the minimum mean difference is 18

Determine which pairs have significantly different means

Tx1 vs. Tx2           Tx1 vs. C               Tx2 vs. C         
No Diff !                  Sig Diff !!              No Diff !!

Determine what part(s) of the RH were supported by the 
pairwise comparisons …

RH: Tx1 = Tx2           Tx1 > C            Tx2 > C 

results Tx1 = Tx2           Tx1 > C            Tx2 = C 

well ? supported supported not supported

We would conclude that the RH: was partially supported !



“The Problem” with making multiple pairwise 
comparisons -- “Alpha Inflation”
 As you know, whenever we reject H0:, there is a chance of 

committing a Type I error (thinking there is a mean 
difference when there really isn’t one in the population)
– The chance of a Type I error  =  the p-value
– If we reject H0: because p < .05, then there’s about a 5% 

chance we have made a Type I error
 When we make multiple pairwise comparisons, the Type I 

error rate for each is about 5%, but that error rate 
“accumulates” across each comparison -- called “alpha 
inflation”
– So, if we have 3 IV conditions and make 3 the pairwise 

comparisons possible, we have about ...
3 * .05 = .15 or about a 15% chance of making at 

least one Type I error

Alpha Inflation
 Increasing chance of making a Type I error as 

more pairwise comparisons are conducted

Alpha correction
 adjusting the set of tests of pairwise differences 

to “correct for” alpha inflation
 so that the overall chance of committing a Type I 

error is held at 5%, no matter how many pairwise 
comparisons are made

Here are the pairwise comparisons most commonly used  -- but  
there are several others

Fisher’s LSD (least significance difference) 

• no Omnibus-F – do a separate F- or t-test for each pair of 
conditions

• no alpha correction -- use  = .05 for each comparison

Fisher’s “Protected tests”

• “protected” by the omnibus-F -- only perform the pairwise 
comparisons IF there is an overall significant difference

• no alpha correction -- uses  = .05 for each comparison



Scheffe’s test

• emphasized importance of correction for Alpha Inflation  

• pointed out there are “complex comparisons” as well as 
“pairwise” comparisons that might be examined

• E.g., for 3 conditions you have…

• 3 simple comparisons     Tx1 v. Tx2     Tx1 v. C      Tx2 v. C

• 3 complex comparisons – by combining conditions and 
comparing their average mean to the mean of other condition

Tx1+Tx2 v. C      Tx1+C v. Tx2         Tx2+C v. Tx1

• developed formulas to control alpha for the total number of 
comparisons (simple and complex) available for the 
number of IV conditions

Bonferroni (Dunn’s) correction

• pointed out that we don’t always look at all possible comparisons

• developed a formula to control alpha inflation by “correcting 
for”the actual number of comparisons that are conducted

• the p-value for each comparison is set   =  .05 / #comparisons

Tukey’s HSD (honestly significant difference) 
• pointed out the most common analysis was to look at all the 

simple comparisons – most RH: are directly tested this way
• developed a formula to control alpha inflation by “correcting for” 

the number of pairwise comparisons available for the
number of IV conditions

Dunnett’s test
• used to compare one IV condition to all the others
• alpha correction considers non-independence of comparisons

The “tradeoff” or “continuum” among pairwise comparisons

Type II errors Type I errors

Type I errors Type II errors

more “sensitive” more “conservative”

Fisher’s Protected

Fisher’s LSD Bonferroni HSD    Scheffe’s

Bonferroni has a “range” on the continuum, depending upon the 
number of comparisons being “corrected for” 

Bonferroni is slightly more conservative than HSD when 
correcting for all possible comparisons



So, now that we know about all these different types of 
pairwise comparisons, which is the “right one” ???
Consider that each test has a build-in BIAS …

• “sensitive tests” (e.g., Fisher’s Protected Test & LSD)
• have smaller mmd values (for a given n & MSerror)
• are more likely to reject H0: (more power - less demanding)
• are more likely to make a Type I error (false alarm) 
• are less likely to make a Type II error (miss a “real” effect)

• “conservative tests” (e.g., Scheffe’ & HSD)
• have larger mmd values (for a given n & MSerror)
• are less likely reject H0: (less power - more demanding)
• are less likely to make a Type I error (false alarm)
• are more likely to make a Type II error (miss a “real effect”)

Using the XLS Computator to find the mmd for BG designs

n = N / k 

k = # 
conditions

Use these values to 
make pairwise 
comparisons

dferror is selected using a dropdown menu –
use smaller value to be conservative

Using the xls Computator to find mmd for WG designs

N = n 

k = # 
conditions

Use these values to 
make pairwise 
comparisons



Some common questions about applying the lsd/hsd formulas…

What is “n ” if there is “unequal-n” ?
• This is only likely with BG designs -- very rarely is there 

unequal n in WG designs, and most computations won’t 
handle those data.

• Use the “average n” from the different conditions.
• Use any decimals -- “n” represents “power” not “body count”

What is “n” for a within-groups design ?
• “n” represents the number of data points that form each IV 

condition mean (in index of sample size/power),
• n = N (since each participant provides data in each IV

condition)

But, still you ask, which post test is the “right one” ???
Rather than “decide between” the different types of bias, I will ask 
you to learn to “combine” the results from more conservative and 
more sensitive designs.
If we apply both LSD and HSD to a set of pairwise comparisons, 
any one of 3 outcomes is possible for each comparison

• we might retain H0: using both LSD & HSD
• if this happens, we are “confident” about retaining H0:, 

because we did so based not only on the more 
conservative HSD, but also based on the more sensitive LSD

• we might reject H0: using both LSD & HSD
• if this happens we are “confident” about rejecting H0: 
because we did so based not only on the more sensitive LSD, 
but also based on the more conservative HSD

• we might reject H0: using LSD & retain H0: using HSD
• if this happens we are confident about neither conclusion

Applying Bonferroni 

Unlike LSD and HSD, Bonferroni is based on computing a 
“regular” t/F-test, but making the “significance” decision based on 
a p-value that is adjusted to take into account the number of 
comparisons being conducted.

Imagine a 4-condition study - three Tx conditions and a Cx. The RH: is that 
each of the TX conditions will lead to a higher DV than the Cx.  Even though 
there are six possible pairwise comparisons, only three are required to test the 
researcher’s hypothesis.  To maintain an experiment-wise Type I error rate of 
.05, each comparison will be evaluated using a comparison-wise p-value 
computed as

If we wanted to hold out experiment-wise Type I rate to 5%, we 
would perform each comparison using…

E /  # comparisons = C .05 / 3     = .0167

We can also calculate the experiment-wise for a set of comps…
With p=.05 for each of 4 coms our experiment-wise Type I error 
rate would be …    E = # comparisons * C = 4 * .05 = 20%



A few moments of reflection upon “Experiment-wise error rates”

the most commonly used E estimation formula is …

E = C  * # comparisons
e.g.,  .05 * 6 = .30, or a 30% chance of making at least 1 Type I 

error among the 6 pairwise comparisons

But, what if the results were as follows (LSDmmd = 7.0)

Tx1   Tx2   Tx3   C
Tx1  12.6
Tx2  14.4       1.8
Tx3  16.4       3.8    2.0
C      22.2       9.6* 7.8* 5.8       

We only rejected H0: for 2 of the 
6 pairwise comparisons.  We 
can’t have made a Type I error 
for the other 4 -- we retained the  
H0: !!!

At most our E is 10% -- 5% for each of 2 rejected H0:s

Here’s another look at the same issue…
imagine we do the same 6 comparisons using t-tests, so we get 
exact p-values for each analysis…
Tx2-Tx1   p. = .43       Tx3-Tx1   p. = .26       Tx3-Tx2   p. = .39

C-Tx1  p. = .005          C-Tx2  p. = .01            C-Tx3  p. = .14
We would reject H0: for two of the pairwise comparisons ... 
We could calculate E as Σp = .005 + .01 = .015

**

What is our E for this set of comparions?  Is it …
.05 * 6 = .30, a priori E – accept a 5% risk on each of the possible

pairwise comparisons ???
.05 * 2 = .10, post hoc E – accept a 5% risk for each rejected 

H0: ???
.005 + .01 = .015, exact post hoc E – actual risk accumulated 

across rejected H0:s ???
Notice that these E  values vary dramatically !!!


