Demonstration of 2-Group Linear Discriminant Function Analysis

The purpose of the analysis was to identify social behaviors that would discriminate between "accepted" and "rejected' adolescents who were categorized using standard sociometric procedures. Eight behaviors were chosen based on a literature review – four "positive" (first 4) and four "negative" behaviors (last 4).

Analyze \rightarrow Classify \rightarrow Discriminant

🖈 school	<u> </u>	<u>Grouping Variable:</u> socio(1,2)	OK
 gender subnum 		Define Range	<u>P</u> aste
🔹 tissorf		Denne mange	<u>R</u> eset
recipbf	20. 00	Independents:	Cancel
 number peo number of re tell jokes [i1] 	ple rate eciproc	stick up for others stick up for others ask others to go pl help w/ homework	Help
 get others to forget to rett make jokes 	urn iten when v	Enter independents togethe Use stepwise method	:r

Move the criterion into the "Grouping Variable" window and click the "Define Range" button.

Enter the minimum and maximum code values for the groups (usually 1 & 2).

Discrim	inant A	nal [
Mjinimum:		Continue
M <u>a</u> ximum:		Cancel
		Help

Click the Statistics button and request univariate stats and F-tests

Discriminant An	alysis: Statistics	×
Descriptives ✓ Means ✓ Univariate <u>A</u> NOVAs ■ Box's M Function Coefficients	Matrices Within-groups correlation Within-groups covariance Separate-groups covariance Lotal covariance	
Eisher's	Continue Cancel Help	

Prior Probabilities	Use Covariance Matrix	Continue
All groups equal		
Compute from group sizes	C Separate-groups	Cancel
Display Casewise r <u>e</u> sults ↓ Limit cases to first ✓ Summary table ↓ Leaye-one-out classification	Plots Combined-groups Separate-groups Territorial map	

Click the Classify button and request a summary table of the reclassification results

SPSS Output

Group Statistics

				Valid N (li	stwise)
sociometric status		Mean	Std. Deviation	Unweighted	Weighted
popular	stick up for others	4.56	1.105	32	32.000
	ask others to go places	4.31	1.230	32	32.000
	help w/ homework when asked	5.06	1.045	32	32.000
	listen to others problems	5.41	1.160	32	32.000
	push others	1.63	.833	32	32.000
	tell others what to do	3.22	1.431	32	32.000
	ignore conversations	2.28	1.023	32	32.000
	hit others	2.31	1.554	32	32.000
rejected	stick up for others	4.00	1.291	19	19.000
	ask others to go places	4.00	1.333	19	19.000
	help w/ homework when asked	4.05	1.545	19	19.000
	listen to others problems	3.79	1.843	19	19.000
	push others	2.47	1.679	19	19.000
	tell others what to do	2.58	1.216	19	19.000
	ignore conversations	3.32	1.529	19	19.000
	hit others	3.11	1.449	19	19.000
Total	stick up for others	4.35	1.197	51	51.000
	ask others to go places	4.20	1.265	51	51.000
	help w/ homework when asked	4.69	1.334	51	51.000
	listen to others problems	4.80	1.637	51	51.000
	push others	1.94	1.271	51	51.000
	tell others what to do	2.98	1.378	51	51.000
	ignore conversations	2.67	1.322	51	51.000
	hit others	2.61	1.550	51	51.000

Tests of Equality of Group Means

	Wilks'				
	Lambda	F	df1	df2	Sig.
stick up for others	.947	2.723	1	49	.105
ask others to go places	.985	.723	1	49	.399
help w/ homework when asked	.863	7.755	1	49	.008
listen to others problems	.768	14.843	1	49	.000
push others	.894	5.825	1	49	.020
tell others what to do	.949	2.654	1	49	.110
ignore conversations	.854	8.384	1	49	.006
hit others	.938	3.259	1	49	.077

Notice that the popular group had higher means on all of the "positive" behaviors (though only 2 were significantly higher).

However, the popular group had lower means on only 3 of the 4 "negative" behaviors (with only 2 significant differences).

Always take a moment to examine and interpret these bivariate analyses, for two reasons:

- 1. You need to know these results to properly interpret the multivariate results identifying the occurrence of suppressors and other "surprises"
- 2. At some point you will need to determine whether to present the multivariate results or just the bivariate analyses (depending upon intent, audience, "value" of the multivariate results" etc.)

Remember it is a bad idea to exclude variables from a multivariate analysis because they don't have bivariate differences – this ignores suppressor effects, multivariate power issues as well as the basic idea that more complicated models are more likely to capture the complexities of behavior!

Often these group means are presented as graph of group profiles, rather than as a table. SPSS will make such a graph, with a bit of persuasion...

Analyze \rightarrow Compare Means \rightarrow Means

Initial output

Mean help w/ listen to stick up k others omework others ell other ignore sociometric prother populaceshen askeroblemsish other hat to dinversationit other popular 4.56 5.06 5.41 1.63 3.22 2.28 2.31 4.31 rejected 4.00 4.00 4.05 3.79 2.47 2.58 3.32 3.11 Total 4.35 4.20 4.69 2.98 4.80 1.94 2.61 2.61 6.00-5.25-4.50 -3.75-3.00-2.25-1.50 push others ignore conversations hit others stick up for others others what to do ask others to go places nelp w/ homework when asked isten to others problems tell

Report

variables in to the "Dependent List" window Move the grouping variable into the "Independent List" window

Move the predictors

Click the Options button

You want only "Mean" in the "Cell Statistics:" window.

Including other stats will complicate things later.

Double-click the table in the SPSS output, putting you into edit mode.

Right-click the table. Create Graph \rightarrow Line

For the version below I edited out the Total row before making the graph.

sociometric status
——— popular
rejected

Careful arrangement of the variables on the X axis can make it each for the reader to see the overall pattern of the group differences.

On to the multivariate analyses!

SPSS Output

	-	Eigenvalue	S	
				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	.859 ^a	100.0	100.0	.680

a. First 1 canonical discriminant functions were used in the analysis.

Wilks'	Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sia
	Eambaa	on oquaro	u u	oig.
1	.538	27.902	8	.000

Standardized Canonical Discriminant Function Coefficien

	Function
	1
stick up for others	271
ask others to go places	011
help w/ homework when asked	.524
listen to others problems	.654
push others	330
tell others what to do	.247
ignore conversations	774
hit others	.264

There are two sets of values that are routinely used to interpret ldfs. The *standardized ldf coefficients* are just that, the ß weights we use with participant's standardized predictor scores to compute their ldf score. As ß weights, they reflect the unique contribution of each predictor to the ldf.

SPSS does not provide significance tests of these B weights. Effect size-based rules of thumb are usually used, with values in the +/- .3-.4 range indicating a "contributing predictor"

This model accounts for .68² = 46% of the between group variance

This is one of the statistics used to answer the question, "How well does the model work?"

This shows the significance test used to answer the question, "Does the model work?" This model does "work" better than would be expected by chance for this sample size.

Structure	Matrix
-----------	--------

	Function
	1
listen to others problems	.594
ignore conversations	446
help w/ homework when asked	.429
push others	372
hit others	278
stick up for others	.254
tell others what to do	.251
ask others to go places	.131

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions Variables ordered by absolute size of correlation within function.

A structure weight is the correlation between scores on that predictor and scores on the ldf. The use of structure weights in ldf analyses comes from factor analysis, and the tradition of "naming a variate in terms of the variables with which it correlates."

Structure weights are correlations and significance tests using df= N-2 are possible, but the usual rule of thumb is to interpret predictors that have structure weights in the +/- .3-.4 range (though some folks/texts will suggest higher or lower values – wouldn't you just figure).

"Interpretation in multiple regression involves: identifying the contributing predictors and 2) noting any suppressor effects. In ldf, however, "interpretation" may involve providing a "name" for the ldf.

Probably the most complete interpretation of an ldf involves starting with the structure weights to tell which predictors are correlated with and therefore tell the attributes related to the ldf. Then augment this description by using the ß weights to tell which predictors have unique contributions

Interpretation of the ldf requires knowing which group is on which "end of the ldf.

A "group centroids" is the mean value of the ldf scores for that group.

Larger centroids differences reflect better group discriminability. The centroids will be equidistant from the means when there are 2 groups or equal sample size.

Functions at Group Centroids

	Function
sociometric status	1
popular	.700
rejected	-1.179

Unstandardized canonical discriminant functions evaluated at group means

Probably the best way to portray ld results is to use a graphic display that shows the position of each group on the ldf, and then labels the ldf using the information from the structure matrix. Here's an example...

Interpretation is pretty simple in this case, because the variables with structure weights above the cutoff are also those with ß weights above the cutoff. This isn't always the case, because or colinearity among the predictors.

Second Example – With Write-up \rightarrow Look for "multivariate power"

Participants were given either "success" or "failure" feedback (randomly chosen) on the first 25 of 50 trials, and after completing the next 25 trials, were then asked to give ratings of their ability on those latter 25 trials and the difficulty of the task.

SPSS Code:

data list free / subn grp ability diffic.

value labels grp 1'success feedback' 2 'failure feedback'.

variable labels ability 'self-report of ability for last 25 trials' /diffic 'rating of task difficulty'.

SPSS Output:

		Group 1	Group means		ard Deviations
GRP		ABILITY	DIFFIC	ABILITY	DIFFIC
Success	1	4.375	5.250	1.84681	1.035
Failure	2	2.750	6.125	1.38873	.640

Wilks'	Lambda	(U-statistic) and univariate F-ratio	
with	1 and	14 degrees of freedom	

Variable	Wilks' Lambda	F	Significance	
ABILITY	.77966	3.957	.0666	These results reveal that neither
DIFFIC	.77209	4.133	.0615	variable has a difference between grps.

Canonical Discriminant Functions

		Pct of	Cum	Canonical	After	Wilks'			
Fcn	Eigen	Variance	Pct	Corr	Fcn	Lambda	Chisquare	DF	Sig
				:	: 0	.6278	6.052	2	.0485
1	.5928	3 100.00	100.0	00 .6101 :	:				

What to look for in this part of the printout:

The X² is the sphericity test – H0: there are no between group differences from which to build a model The "Cannonical Corr²" is much like the R² you are used to -- between group variance accounted for by the model

So, from this, we would decide that the "proper" combination of these two variables will produce a new variable (ldf) which can differentiate between the groups.

	Actual	Group	No. of Cases	Predicted 1	Group Men 2	nbership		
Gre	 oup	1	8	5	3			
	-			62.5%	37.5%	6		
Gre	oup	2	8	2	6			
	_			25.0%	75.0%	6		
Pe	rcent of	E "grouped"	cases corre	ectly class	sified: 6	58.75%	(vs. chance	9 of 50%)
Standar	rdized Car Coeffici	nonical Disc ents	Unstandard Functi	ized Canonica on Coefficie	l Disc nts	Structure Pooled-withicorrelations variables an discriminant	Matrix: in-groups Functi between discrin d canonical functions	.on minating
		FUNC 1		FUNC	1		FUNC 1	
ABII	LITY	70881	ABILITY	433814	5	ABILITY	69044	
DIFE	FIC	.72363	DIFFIC	.840589	1	DIFFIC	.70563	

Remember: When interpreting the canonical coefficients (weights), remember that they are influenced by the collinearity among the variables in the model.

(constant) -3.235386

When interpreting the structure weights, remember that they do not tell the unique contribution of Variables – but rather, tell how strongly each variable is correlated with the ldf.

Combining the information from the structure weights and canonical coefficients, we would conclude that both variables are strontly related to the ldf (large structure weights) and that each has a unique contribution to the model (large standardized canonical coefficients). You should also notice that the signs of the variables are opposite each other – more on that below.

Canonical Discriminant Functions evaluated at Group Means (Group Centroids)

Classification Results -

Group	FUNC 1	These are the group means on the ldf (new variable) The overall mean ldf is always zero. The two group
1	72023	centroids will be symmetrical around zero when the
2	.72023	two groups have equal N.

Graphic Display of Results & Interpretation

I like to use a graphical display to Help summarize and interpret the in information from the centroids and the structure matrix. Write-up -- the write-up of an LDF analysis is very much like that of a multiple regression

- Describe the variables involved and tell the statistical model employed
- Present the univariate and bivariate summary data (probably in a Table1)
- Report whether or not the model "works" and the related statistical test (present λ and the X² with its df & p-value)
- Describe "how well" the model works, using both the R²-canonical and the % correct re-classification
- Tell which variables contribute to the model (based on the structure weights & a cutoff of +/- .30
- (probably put the weights in a Table 2)
- Present a graphical depiction of the results

Discriminant analyses were used to determine if groups given "false success" and "false failure" feedback during the first 25 trials of a conceptual matching tasks gave differential reports of ability and task difficulty following a second block of 25 trials. Table 1 presents a summary of the univariate and bivariate analyses. Neither of the variables produced significant differences between the groups.

Multivariate analysis revealed a significant difference between the two feedback groups (λ = .628, X²(2) = 6.05, p =.049), with an R²-canonical = .372, and 69% correct re-classification (11 out of 16; chance was 50%). Table 2 shows the standardized canonical coefficients and the structure weights, revealing that both of the variables contributed to the multivariate effect.

Figure 1 gives a graphical depiction of the multivariate results. As can be seen, students who had been given "failure" feedback following the first block of 25 trials gave higher difficulty ratings and lower ability ratings than did those students who had been given "success" feedback.

Variable	"Success" Feedback	"Failure" Feedback	F(p)
Ability rating	4.375 (1.847)	2.750 (1.389)	3.957 (.067)
Difficulty rating	5.250 (1.035)	6.125 (.640)	4.133 (.062)

Table 1. Means (standard deviations) and ANOVA results

Table 2. Standardized Canonical Coefficients and Structure weights from the discriminant model

Variable	Standardized Coefficients	Structure Weights
ABILITY	709	690
DIFFIC	.724	.706

Figure 1. Graphical depiction of the discriminant function results.

