Bivariate Data Cleaning

Bivariate Outliers In Simple Correlation/Regression Analyses

Imagine we are interested in the correlation between two variables. Being schooled about outliers we examine the distribution of each variable before beginning the analysis.

Statistics							
		X1	Y1				
Ν	Valid	50	50				
	Missing	C	0				
Mean		45.7200	46.4400				
Std. Deviation		14.94349	8.13950				
Skewness		277	384				
Std. Error of SI	kewness	.337	.337				
Minimum		17.00	29.00				
Maximum		69.00	64.00				

Percentiles							
			Percentiles				
	25 50 75						
Tukey's Hinges	X1	34.0000	47.5000	58.0000			
Y1 42.0000 47.5000 51.0000							

For X	1.5*hinge spread = 36, with outlier boundaries of	-2 & 94	\rightarrow	no outliers
For Y	1.5*hinge spread = 13.3, with outlier boundaries of	28.7 & 64.3	\rightarrow	no outliers (but close).

So, we proceed with getting the correlation between the variables.

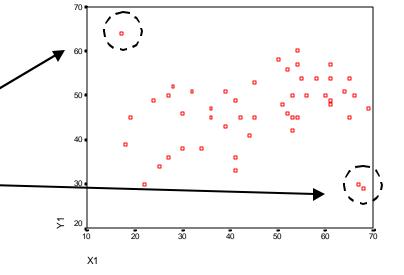
Correlations

-			
		X1	Y1
X1	Pearson Correlation	1	.191
	Sig. (2-tailed)		.184
	Ν	50	50
Y1	Pearson Correlation	.191	1
	Sig. (2-tailed)	.184	
	Ν	50	50

Which looks more like a positive correlation, except for a few notable cases...

None of these cases are "outliers" on either X or Y, but they do seem to be bivariate outliers. That is, they are outliers relative to the central envelope of the scatterplot.

They might also be "influential cases" in " a bivariate sense, because they might be pivoting the regression line and lowering the sample r -- notice that all are away from the means of X and Y!



Clearly nonsignificant.

corresponding scatterplot.

But we also knew enough to get the

One way to check if these are such "bivariate outliers" is to examine the residuals of the cases in the analysis. To do this, we obtain the bivariate regression formula, apply it back to each case obtaining the y', and then compute the residual as y-y'. Actually SPSS will do this for us within a regression run.

Analyze →	Regression →	Linear
-----------	--------------	--------

🛃 Linear Regression			X
() * * 1		Dependent:	OK
		(₩) y1	<u>P</u> aste
	Pregious	Block 1 of 1 <u>N</u> ext	<u>R</u> eset
		Independent(s):	Cancel
		(∰) ×1	Help
		Method: Enter	
		S <u>e</u> lection Variable:	
		Case Labels:	
<u>W</u> LS >>	<u>S</u> tatistics	Plots Save Options]

Highlight and move the criterion and predictor variables.

Click "Save" and check the types of Residuals you'd like.

Then we "Examine" the residual values. To do this we can apply the same outlier formulas we applied to any input variable -- but applying this approach to the residual means we are looking for cases that are specifically "bivariate outliers".

Predicted Values	Residuals	Continue
Unstandardized	Unstandardized	Cancel
🗖 Standa <u>r</u> dized	🔽 Standardized	
🗖 Adjusted	☐ Studentized	Help
S.E. of mean predictions	Deleted	
Distances	Studentized deleted	
Mahalanobis	Influence Statistics	
Coo <u>k</u> 's	☐ Df <u>B</u> eta(s)	
🗖 Leverage values	🔲 Standardized DfBeta(s)	
	🗖 Df <u>F</u> it	
Prediction Intervals	📕 Standardized DfFit	
Mean I Individual	Covariance ratio	
Confidence Interval: 95 %		
Save to New File		
Coefficient statistics File	1	
Export model information to XML	fileBrowse	

Leaving out a few portions of the output, we get...

Statistics

Unstandardized Residual

Ν	Valid	50				
	Missing	0				
Minimum		-19.75953				
Maximum		20.54999				

Percentiles

		Percentiles 25 50 75		
Tukey's Hinges	Unstandardized Residual	-4.05412	1.1034447	5.0527943

Applying the formulas, we get...

For X 1.5*hinge spread = 9.1, with outlier boundaries of -13.15 & 14.15 \rightarrow clearly there are bivariate outliers

If we trim these cases, we can take a look at the before and after regression, to examine the "influence" of these cases.

To trim them **Data** \rightarrow **Select Cases** with the formula (res_1 ge -13.15) and (res_1 le 14.15)

Here's the "Before-" and "After-Trimming" regression results.

Before

Model Summary ^b								
Model	R	R Square						
1	1 .191 ^a .037							

a. Predictors: (Constant), X1

b. Dependent Variable: Y1

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	118.596	1	118.596	1.820	.184 ^a
	Residual	3127.724	48	65.161		
	Total	3246.320	49			

ANOVA

a. Predictors: (Constant), X1

b. Dependent Variable: Y1

Coefficients^a

		Unstanc Coeffi		Standardi zed Coefficien ts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	41.680	3.708		11.240	.000
	X1	.104	.077	.191	1.349	.184

a. Dependent Variable: Y1

Things to notice:

- The change in df error tells us we trimmed 4 cases (upper-left case on scatterplot is 2 cases)
- There was a substantial drop in MSerror, and in the Std Error of the regression coefficient

Model

1

- Both indicate the "error" in the model was reduced (since we trimmed cases with large residuals)
- The r and b values are substantially larger and statistically significant

After

Model Summary^b

Model	R	R Square
1	.471 ^a	.221

a. Predictors: (Constant), X1

b. Dependent Variable: Y1

a. Predictors: (Constant), X1

Sum of

Squares

458.252

1611.683

2069.935

b. Dependent Variable: Y1

Regressior

Residual

Total

Coefficients

		Unstandardized Coefficients		Standardi zed Coefficien ts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	36.556	3.126		11.695	.000
	X1	.231	.065	.471	3.537	.001

So -- check those scatterplots and examine residuals to look for bivariate outliers.

F

12.511

Sig.

.001^a

Mean Square

458.252

36.629

When doing multiple regression, examine each of the X-Y plots at a minimum. Examining all the interpredictor plots can be important as well!

a. Dependent Variable: Y1

ANOVÅ

1

44

45

df

immed 4 cases (upper-left of error, and in the Std Error of

"Bivariate Outliers" In Group Comparison Analyses

This time we have a variable "Z" that tells which group each participant was in -1 = control and 2 = treatment. We know that there are no outliers on Y1, so we do the ANOVA (after taking out the data selection command).

We get ...

Descriptives

Y1			
	N	Mean	Std. Deviation
1.00	22	45.0455	9.76133
2.00	28	47.5357	6.74664
Total	50	46.4400	8.21437

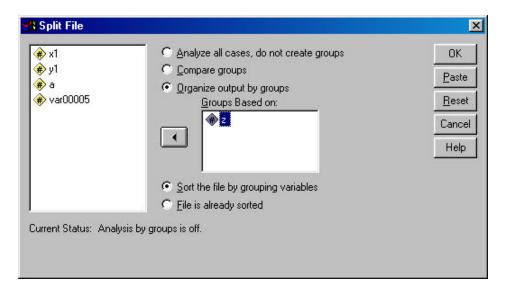
ANOVA

We get no effect (darn).

Then we consider, the purpose of **each** group is to represent their respective population. So, maybe our preliminary outlier analyses should be conducted separately for each group!

Y1					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	76.401	1	76.401	1.135	.292
Within Groups	3229.919	48	67.290		
Total	3306.320	49			

Data -> Split Files



All subsequent analyses will be done for each group defined by this variable.

Group Z = 1

Descriptive Statistics ^a						
	Ν	Minimum	Maximum	Mean	Std. Deviation	
Y1	22	30.00	59.00	45.0455	9.76133	
Valid N (listwise)	22					

a. Z = 1.00

Percentiles^a

		Percentiles			
		25	50	75	
Tukey's Hinges	Y1	36.0000	47.5000	54.0000	

a. Z = 1.00

Group Z = 2

Descriptive Statistics^a

	Ν	Minimum	Maximum	Mean	Std. Deviation
Y1	28	28.00	56.00	47.5357	6.74664
Valid N (listwise)	28				

a. Z = 2.00

rercentiles.

		Percentiles			
		25	50	75	
Tukey's Hinges	Y1	45.0000	47.5000	51.0000	

a. Z = 2.00

Outlier boundaries would be...

9 and 8	81 →	no c	outliers
---------	-------------	------	----------

Outlier boundaries would be ...

36 and 60 → at least one "too small" outlier

We can trim outlying values in the Z=2 group, using the following in the Select Cases command...

What we're doing is: 1) selecting everybody in Z=1 (that group has no outliers) 2) selecting only those cases from Z=2 with values that are not outliers

Select Cases: If		×
(₩) x1 (₩) y1 (₩) a	(z = 1) or ((z = 2) and (y1 >= 36))	4
 	+ > 7 8 9 Eunctions: ABS(numexpr) × = = 1 2 3 ANY(test,value,value,) / & 0 ARSIN(numexpr) / & 0 ARTAN(numexpr) / CDFNORM(zvalue) CDFNORM(zvalue) CDF.BERNOULLI(q,p)	4
	Continue Cancel Help	

When we do this the ANOVA results are ...

Descriptives

Y1			
	N	Mean	Std. Deviation
1.00	22	45.0455	9.76133
2.00	27	49.3343	5.65457
Total	50	46.4400	8.21437

ANOVA

Notice what changes and what doesn't...

Nothing changes for the Z=1 group

For the Z=2 group

- the sample size drops by 1
- the mean increases (since all the outliers were "too small" outliers)
- the std decreases (because extreme values were trimmed)

The combined results is a significant mean difference -- the previous results with the "full data set" were misleading because of single extreme case!!!

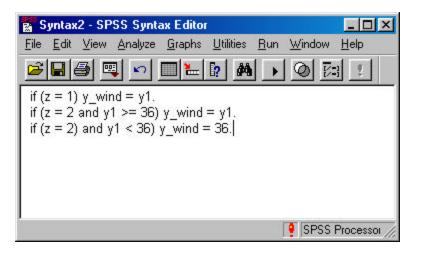
Y1					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	298.869	1	298.869	4.867	.032
Within Groups	2947.451	46	61.405		
Total	3246.320	47			

We can Windsorize outlying values in Z=2 using the following commands -- these build a new variable "y-wind" that

- Has the value of y1 for those in the Z=1 group -- no cases need to be Windsorized
- "too small" outliers are changed to a value of 36 for the Z=2 group -- Windsorizing

File → New → Syntax

this will open a syntax window into which we can type useful commands...



- The first line assigns the y1 score of each person in group Z=1 as their y_wind score
- The second line assigns the y1 score of "non-outliers" in group Z=2 as their y_wind score
- The third line assigns a y_wind score of "36" (the smallest nonoutlying score) to "outliers" in the group Z=2

Then click on the right-pointing arrow to perform the assignments

The results of the Windsorized ANOVA are ...

Descriptives

Y1			
	N	Mean	Std. Deviation
1.00	22	43.6818	9.81440
2.00	28	48.6071	5.85212
Total	50	46.4400	8.13950

ANOVA

Sum of Squares Mean Square F df Sig. Between Groups 298.869 1 295.870 4.732 .042 Within Groups 2947.451 47 62.539 Total 3246.320 48

Applying group-specific outlier analysis

• Do outlier analyses and trimming/Windsorizing separately for each group

- This gets lengthy when working with factorial designs -- remember the purpose of each condition!!!
- Some suggest taking an analogous approach with doing regression analyses that involve a mix of
 continuous and categorical predictors --- examining each group defined by each categorical variable for
 outliers on each quantitative variable (and then following up for bivariate outliers among pairs of
 quantitative variables).

Y1

The mean and std of the Z=2 group change in the same direction, but not as much, as the trimmed data.

Similarly, the MSE doesn't drop as much, but the result still changes to a significant mean difference.