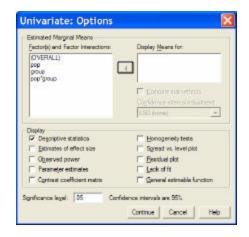
Factorial MANCOVA Example

The data are taken from a "minimal" MANOVA design -- 2 2-group IVs, 2 DVs and a single covariate.


Group*Treatment design. There are two DVs (Performance & Evaluation Rating). A performance pretest is the covariate.

We'll proceed from factorial ANOVAs with each DV and the covariate, through ANCOVAs with each DV-covariate pair, then a factorial MANOVA and finally the factorial MANCOVA analysis. As we work through the progression watch for changes in the "effects" and consider whether or not we learn anything new from each successively more complex analysis.

Factorial ANOVAs of each DV and the Covariate

Factorial ANOVA with Performance as the DV

Descriptive Statistics

Dependent Variable: PERF

POP	GROUP	Mean	Std. Deviation	Ν
1.00	1.00	35.5097	10.25415	18
	2.00	45.6378	11.13390	20
	Total	40.8403	11.75725	38
2.00	1.00	55.7257	8.06672	29
	2.00	43.6741	11.91757	14
	Total	51.8019	10.95416	43
Total	1.00	47.9834	13.30950	47
	2.00	44.8292	11.32634	34
	Total	46.6594	12.53908	81

There is an interaction

 $df_{error} = 77$ MS $_{error} = 101.44$ n = 81/4 = 20.5 LSDmmd = 6.33

The pattern of the interaction is:

Population 1	G1 < G2	or	Group 1	Pop1 < Pop 2
Population 2	G1 > G2		Group 2	Pop1 = Pop 2

There is no main effect of Group (which is misleading for both populations)

Tests of Between-Subjects Effects

Dependent Variable: PERF						
	Type III Sum					
Source	of Squares	df	Mean Square	F	Sig.	
Corrected Model	4767.072 ^a	3	1589.024	15.664	.000	
Intercept	154148.508	1	154148.508	1519.539	.000	
GROUP	17.496	1	17.496	.172	.679	
POP	1575.415	1	1575.415	15.530	.000	
GROUP * POP	2326.318	1	2326.318	22.932	.000	
Error	7811.209	77	101.444			
Total	188923.408	81				
Corrected Total	12578.281	80				

a. R Squared = .379 (Adjusted R Squared = .355)

Factorial ANOVA with Evaluation Rating as the DV

Descriptive Statistics

Dependent	Variable:	RATE	

Depen					
POP	GROUP	Mean	Std. Deviation	Ν	
1.00	1.00	3.6889	3.06610	18	
	2.00	3.2460	3.58948	20	
	Total	3.4558	3.31450	38	
2.00	1.00	5.8238	2.77815	29	
	2.00	5.2374	2.53035	14	
	Total	5.6329	2.68412	43	
Total	1.00	5.0062	3.04512	47	
	2.00	4.0660	3.30609	34	
	Total	4.6115	3.17152	81	

Tests of Between-Subjects Effects

Dependent Variable: RATE

	Type III Sum		Mean		
Source	of Squares	df	Square	F	Sig.
Corrected Model	100.722 ^a	3	33.574	3.672	.016
Intercept	1531.487	1	1531.487	167.52	.000
POP	80.519	1	80.519	8.807	.004
GROUP	5.010	1	5.010	.548	.461
POP * GROUP	.097	1	.097	.011	.918
Error	703.962	77	9.142		
Total	2527.244	81			
Corrected Total	804.684	80			

a. R Squared = .125 (Adjusted R Squared = .091)

There is no interaction.

There is a main effect of Population -- P1< P2

There is no main effect for Group.

Factorial ANOVA with Performance Pretest as the DV -- to check for pattern of initial non-equivalence

Descriptive Statistics					
Depen	dent Variabl	e: PREPERF			
POP	GROUP	Mean	Std. Deviation	N	
1.00	1.00	21.1190	17.83843	18	
	2.00	21.1774	14.81931	20	
	Total	21.1497	16.09282	38	
2.00	1.00	34.6660	13.51042	29	
	2.00	20.5773	13.29106	14	
	Total	30.0790	14.86564	43	
Total	1.00	29.4778	16.52317	47	
	2.00	20.9303	14.00441	34	
	Total	25.8899	15.99692	81	

Tests of Between-Subjects Effects

Dependent Variable: PREPERF						
	Type III Sum		Mean			
Source	of Squares	df	Square	F	Sig.	
Corrected Model	3482.556 ^a	3	1160.9	5.261	.002	
Intercept	44990.448	1	44990	203.906	.000	
POP	792.671	1	792.671	3.593	.062	
GROUP	930.866	1	930.866	4.219	.043	
POP * GROUP	946.429	1	946.429	4.289	.042	
Error	16989.550	77	220.644			
Total	74765.529	81				
Corrected Total	20472.106	80				

a. R Squared = .170 (Adjusted R Squared = .138)

There is an interaction

 $df_{error} = 77$ MS $_{error} = 220.644$ n = 81/4 = 20.5 LSDmmd = 9.279

The pattern of the interaction is:

Population 1	G1	=	G2	or	Group 1	Pop1 < Pop 2
Population 2	G1	>	G2		Group 2	Pop1 = Pop 2

There is a main effect of Group -- Group 1 > Group 2 (which is descriptive for Pop 2 but misleading for Pop 1)

There is no main effect for Population (which is descriptive for Group 2 but misleading for Group 1)

The presence of covariate "effects" suggests that patterns of corrected means for the DVs will be somewhat different from the patterns of the uncorrected means described above. Let's see...

ANCOVA with Performance as the DV & Performance Pre-test as the covariate

Tests of Between-Subjects Effects

Dependent Variable: PERF

	Type III Sum		Mean		
Source	of Squares	df	Square	F	Sig.
Corrected Model	8454.906 ^a	4	2113.726	38.959	.000
Intercept	23660.274	1	23660.274	436.094	.000
PREPERF	3687.834	1	3687.834	67.972	.000
POP	674.714	1	674.714	12.436	.001
GROUP	95.412	1	95.412	1.759	.189
POP * GROUP	1088.497	1	1088.497	20.063	.000
Error	4123.375	76	54.255		
Total	188923.408	81			
Corrected Total	12578.281	80			

a. R Squared = .672 (Adjusted R Squared = .655)

3. POP * GROUP

POP	GROUP	Mean	Std. Error			
1.00	1.00	37.732 ^a	1.757			
	2.00	47.833 ^a	1.668			
2.00	1.00	47.637 ^a	1.455			
	2.00	46.149 ^a	1.991			

 Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

1.	РО	Р

Dependent V	ariable: PERF
-------------	---------------

POP	Mean	Std. Error
1.00	42.783 ^a	1.226
2.00	46.893 ^a	1.203

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

2. GROUP

Dependent Variable: PERF

GROUP	Mean	Std. Error
1.00	44.685 ^a	1.111
2.00	46.991 ^a	1.314

a. Covariates appearing in the model are evaluatec at the following values: PREPERF = 25.8899.

actor()) and Factor Interactions:	Dieplay Means for
(OVERALL) pop group pop*group	bob acorb
	Compare main effects
	Coglificios interval edizabileri
	LSD (none)
lisplay	
Descriptive statistics	Homogeneity tests
Estimates of effect size	Sgread vs. level plot
Observed power	Essidual plot
-	Leck of fit
Parameter estimates	

There is a strong relationship between the covariate (preperf) and the DV (perf), after controlling for the main and interaction effects.

Notice that the MSerror is much smaller in this ANCOVA than it was in the ANOVA with perf as the DV.

This analysis also shows a significant interaction and a significant main effect for population.

The patterns of these effects can be described based on the corrected means.

$df_{error} = 76$ MS $_{error} = 54.255$ n = 81/4 = 20.5 LSDmmd =

The interaction corrected interaction pattern is...

Population 1	G1 < G2	or	Group 1	Pop1 < Pop 2
Population 2	$G1 = G2^*$		Group 2	Pop1 = Pop 2

* is different from the uncorrected interaction pattern in what is likely to be an important way! A cross-over interaction pattern is importantly different from a pattern of one simple effect and one null!

The corrected population effect is Pop 1 < Pop 2, which is descriptive for Group 1 but misleading for Group 2.

The corrected and uncorrected versions of this effect are equivalent.

There is corrected main effect of Group, which is descriptive for Pop 2 but misleading for Pop 1.

The corrected and uncorrected versions of this effect are equivalent.

ANCOVA with Evaluation Rating as the DV & Performance Pre-test as the covariate

Tests of Between-Subjects Effects

Dependent Variable: RATE

	Type III Sum		Mean		
Source	of Squares	df	Square	F	Sig.
Corrected Model	478.593 ^a	4	119.648	27.89	.000
Intercept	15.424	1	15.424	3.595	.062
PREPERF	377.872	1	377.872	88.07	.000
POP	21.779	1	21.779	5.076	.027
GROUP	5.067	1	5.067	1.181	.281
POP * GROUP	17.319	1	17.319	4.036	.048
Error	326.090	76	4.291		
Total	2527.244	81			
Corrected Total	804.684	80			

a. R Squared = .595 (Adjusted R Squared = .573)

3. POP * GROUP

Dependent Variable: RATE

POP	GROUP	Mean	Std. Error
1.00	1.00	4.400 ^a	.494
	2.00	3.949 ^a	.469
2.00	1.00	4.515 ^a	.409
	2.00	6.030 ^a	.560

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

1. POP

Dependent Va	riable: R	ATE

POP	Mean	Std. Error
1.00	4.175 ^a	
2.00	5.272 ^a	.338

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

2. GROUP

Dependent Variable: RATE		
GROUP	Mean	Std. Error
1.00	4.458 ^a	.312
2.00	4.989 ^a	.370

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899. The ANOVA with this DV had only a Population main effect.

This ANCOVA also has a Population main effect, but also has a Interaction.

$df_{error} = 76$ MS $_{error} = 4.291$ n = 81/4	= 20.5 LSDmmd = 1.294
--	-----------------------

The interaction corrected interaction pattern is...

Population 1	G1 = G2	or	Group 1	Pop1 = Pop 2
Population 2	G1 < G2		Group 2	Pop1 < Pop 2

The simple effect of group for population 2 was numerically larger than in the ANOVA and that MS $_{error}$ was substantially larger -- together these differences led to a significant ANCOVA interaction.

The corrected population main effect is equivalent to the uncorrected main effect.

The null corrected group main effect is equivalent to the uncorrected main effect.

MANOVA with Performance and Evaluation Rating as DVs

GLM and MANOVA give very similar output except that only MANOVA gives the beta and structure weights that define the canonical variate. Here's the code (which must be run from the syntax window) and results using SPSS MANOVA.

```
\leftarrow tells the DVs and IVs (with group values)
manova perf rate by pop (1,2) group (1,2)
  / print = signif (multiv, eigen, dimenr)

    gets significance tests and effect sizes

 / discrim stan cor.
                                           ← gets the ß & structure weights
*****Analysis of Variance--design 1*****
EFFECT .. POP BY GROUP
Multivariate Tests of Significance (S = 1, M = 0, N = 37)
                     Exact F Hypoth. DF Error DF Sig. of F
Test Name
               Value
Pillais
              .22954 11.32144
                                   2.00
                                          76.00
                                                     .000
Hotellings
              .29793 11.32144
                                 2.00
                                          76.00
                                                     .000
              .77046 11.32144
                                  2.00
                                          76.00
                                                     .000
Wilks
               .22954
Rovs
Note.. F statistics are exact.
       Eigenvalues and Canonical Correlations
Root No.
          Eigenvalue
                         Pct. Cum. Pct. Canon Cor.
                .298
                      100.000
                                 100.000
                                              .479
      1
 EFFECT .. POP BY GROUP (Cont.)
Standardized discriminant function coefficients
        Function No.
Variable
                 1
PERF
               .963
RATE
              -.020
 Correlations between DEPENDENT and canonical variables
         Canonical Variable
Variable
                 1
PERF
              .971
RATE
               .022
                          The significant interaction canonical variate is predominantly perf, which is
                          consistent with the significant ANOVA interaction for perf and nonsignificant
                          ANOVA interaction for rate.
                          Always compare multivariate and univariate effects and patterns for
                          congruence!
```

*****Analysis of Variance--design 1***** EFFECT .. GROUP Multivariate Tests of Significance (S = 1, M = 0, N = 37) Value Exact F Hypoth. DF Error DF Sig. of F Test Name .00896 .34363 2.00 76.00 .00904 .34363 2.00 76.00 .99104 .34363 2.00 76.00 Pillais .710 Hotellings .710 .710 Wilks .00896 Rovs Note.. F statistics are exact. Eigenvalues and Canonical Correlations The nonsignificant MANOVA group main Pct. Cum. Pct. Canon Cor. Root No. Eigenvalue effect is consistent with there being no .009 100.000 100.000 .095 ANOVA group main effects. 1 EFFECT .. GROUP (Cont.)

>Note # 12188

>Because there are no functions significant at level alpha, MANOVA will not >report any canonical discriminant or correlation analysis for this effect.

—

* * * * * Analysis of Variance -- design 1 * * * * * EFFECT .. POP Multivariate Tests of Significance (S = 1, M = 0, N = 37) Test Name Value Exact F Hypoth. DF Error DF Sig. of F .2331811.555032.0076.00.3040811.555032.0076.00.7668211.555032.0076.00 Pillais .000 Hotellings .000 Wilks .000 Roys .23318 Note.. F statistics are exact. Eigenvalues and Canonical Correlations Pct. Cum. Pct. Canon Cor. Root No. Eigenvalue .304 100.000 .483 100.000 1 EFFECT .. POP (Cont.) The significant MANOVA population main Standardized discriminant function coefficients effect is contributed to by both perf and rate, Function No. which is consistent with the significant Variable 1 ANOVA main effects for both DVs. PERF .791 RATE .581 Correlations between DEPENDENT and canonical variables Canonical Variable Variable 1 .814 PERF RATE .613

Examining the Multivariate Means

🖗 group	Variable(s):	ОК
pop preperi preperi	or pert or pert	<u>P</u> aste
Deperf		Beest
zate		Cancel
		Help

Descriptive Statistics

Depen	dent Varial	ole: INT_MV	1	
POP	GROUP	Mean	Std. Deviation	Ν
1.00	1.00	8505	.77664	18
	2.00	0698	.86189	20
	Total	4396	.90257	38
2.00	1.00	.6886	.61872	29
	2.00	2332	.91650	14
	Total	.3885	.84039	43
Total	1.00	.0992	1.01385	47
	2.00	1371	.87479	34
	Total	.0000	.95942	81

Tests of Between-Subjects Effects

Dependent Variable: INT_MV

	Type III Sum		Mean		
Source	of Squares	df	Square	F	Sig.
Corrected Model	27.631 ^a	3	9.210	15.415	.000
Intercept	1.022	1	1.022	1.711	.195
POP	8.950	1	8.950	14.980	.000
GROUP	.094	1	.094	.158	.692
POP * GROUP	13.707	1	13.707	22.940	.000
Error	46.007	77	.597		
Total	73.638	81			
Corrected Total	73.638	80			
				0 = 4)	

a. R Squared = .375 (Adjusted R Squared = .351)

To make the "MANOVA variates" for each significant multivariate effect we first obtain Z-score versions of each DV, then apply the standardized discriminant function coefficients for each.

compute int_mv	= (zperf * .963)	+ (zrate *020).
compute pop_mv	= (zperf * .791)	+ (zrate * .581).

Remember that each variate is specific to one effect!

For the Interaction (Hang on -- this is cool!)

We have a significant interaction, but need an LSDmmd to discern the pattern. MSerror is not given in the multivariate results -- but is available in a roundabout way.

Use the interaction manova variate as the DV in a factorial ANOVA. The results give the proper SS, but the MS and F are based on univariate degrees of freedom. We have to adjust the df to represent the multivariate design, compute the mean square (SS / df) and then recomputed F.

The Interaction df needs to be 2 = (#groups - 1)*#dvsThe error df needs to be 76 -- as given on the MANOVA output

So...

 $MS_{int} = 13.707 / 2 = 6.854$ $MS_{error} = 46.007 / 76 = .605$

Check → F = 6.854 / .605 = 11.329 ~ 11.321 from MANOVA

With that dferror and MSerror LSDmmd = .485

For Pop 1 Group 1 < Group 2 For Pop 2 Group 1 > Group 2

The canonical variate for the interaction that is dominated by perf has the same pattern as did the ANOVA interaction of perf

For the population main effect

The canonical variate for population main effect has the same pattern as the perf and rate main ANOVA effects

The MANOVA didn't have any "surprises" -- the effects and the composition of the canonical variates were predictable from the corresponding univariate effects. However, this is not always the case and careful comparisons should always be made.

Descriptives

POP_MV

	V		
	Ν	Mean	Std. Deviation
1.00	38	5788	.97254
2.00	43	.5115	.87286
Total	81	.0000	1.06640

MANCOVA with Performance and Evaluation Rating as DVs and Performance Pre-test as the Covariate

Again we'll use the MANOVA code (run from the syntax window).

```
manova perf rate by pop (1,2) group (1,2) with preperf \leftarrow DVs by IVs with COVs
  / print = signif (multiv, eigen, dimenr)
                                                    ← gets sig tests & effect sizes
  / discrim stan cor.
                                                     \leftarrow gets the ß & structure weights
Covariate -- relationship between the covariate and the dependent variables
*****Analysis of Variance--design 1*****
EFFECT .. WITHIN CELLS Regression
Multivariate Tests of Significance (S = 1, M = 0, N = 36 1/2)
              Value Exact F Hypoth. DF Error DF Sig. of F
Test Name
Pillais.96910 1176.254302.0075.00Hotellings31.36678 1176.254302.0075.00Wilks.03090 1176.254302.0075.00
                                                     .000
                                                    .000
                                                    .000
Roys
              .96910
Note.. F statistics are exact.
 Eigenvalues and Canonical Correlations
        Eigenvalue
                      Pct. Cum. Pct. Canon Cor.
Root No.
                                                   Sq. Cor
      1
              31.367
                      100.000
                                100.000
                                             .984
                                                       .969
 Standardized canonical coefficients for DEPENDENT variables
        Function No.
Variable
                1
                              This shows there is a very strong relationship between the covariate
              .668
PERF
                               and canonical variate that is made up of both perf and rate.
RATE
              .717
* * * * * Analysis of Variance -- design 1 * * * * *
Correlations between DEPENDENT and canonical variables
        Function No.
Variable
                 1
PERF
              .698
RATE
              .744
 Standardized canonical coefficients for COVARIATES
        CAN. VAR.
                           If there were multiple covariates these weights would help to identify
COVARIATE
                1
PREPERF
            1.000
                           which variables define the associated covariate.
 Correlations between COVARIATES and canonical variables
        CAN. VAR.
Covariate
                 1
PREPERF
            1.000
```

* * * * * * Analysis of Variance -- design 1 * * * * * * EFFECT .. POP BY GROUP Multivariate Tests of Significance (S = 1, M = 0, N = $36 \ 1/2$) Value Exact F Hypoth. DF Error DF Sig. of F Test Name
 2.00
 75.00

 2.00
 75.00

 2.00
 75.00
 .000 Pillais .43144 28.45661 .75884 28.45661 .56856 28.45661 .000 Hotellings .000 Wilks .43144 Rovs Note.. F statistics are exact. Eigenvalues and Canonical Correlations Pct. Cum. Pct. Canon Cor. Root No. Eigenvalue 100.000 .657 .759 100.000 1 EFFECT .. POP BY GROUP (Cont.) Standardized discriminant function coefficients Function No. There is a significant multivariate interaction, after accounting for the Variable 1 covariate. The associated canonical variate is dominated by perf. We will have to compute the canonical variate to determine the .715 PERF corrected means and the pattern of that interaction., RATE -.274 - - - - -Correlations between DEPENDENT and canonical variables Canonical Variable Variable 1 PERF .590 RATE -.265

* * * * * * Analysis of Variance -- design 1 * * * * * * EFFECT .. GROUP Multivariate Tests of Significance (S = 1, M = 0, N = $36 \ 1/2$) Value Exact F Hypoth. DF Error DF Sig. of F Test Name 75.00 Pillais .37016 22.03898 2.00 .000 .000 .58771 22.03898 75.00 Hotellings 2.00 .62984 22.03898 2.00 75.00 .000 Wilks .37016 Roys Note.. F statistics are exact. Eigenvalues and Canonical Correlations Pct. Cum. Pct. Canon Cor. Root No. Eigenvalue 100.000 1 .588 100.000 .608 EFFECT .. GROUP (Cont.) Standardized discriminant function coefficients Function No. Variable 1 The canonical variate for the multivariate group main effect involves both perf and rate. We'll have to compute the variate to PERF .478 obtain the corrected means and the pattern of the main effect. RATE .460 Correlations between DEPENDENT and canonical variables Canonical Variable Variable 1 PERF .598 RATE .563

* * * * * Analysis of Variance -- design 1 * * * * * EFFECT .. POP Multivariate Tests of Significance (S = 1, M = 0, N = $36 \ 1/2$) Value Exact F Hypoth. DF Error DF Sig. of F Test Name 2.00 75.00 2.00 75.00 2.00 75.00 Pillais .77149 126.60959 .000 .000 3.37626 126.60959 3.37626 126.60959 .22851 126.60959 Hotellings .000 Wilks .77149 Rovs Note.. F statistics are exact. Eigenvalues and Canonical Correlations Pct. Cum. Pct. Canon Cor. Root No. Eigenvalue 100.000 .878 1 3.376 100.000 EFFECT .. POP (Cont.) Standardized discriminant function coefficients Function No. Variable 1 The canonical variate for the multivariate population main effect involves both perf and rate. We'll have to compute the variate to PERF .788 obtain the corrected means and the pattern of the main effect. RATE .747 Correlations between DEPENDENT and canonical variables Canonical Variable Variable 1 PERF .520 RATE .441

Examining the Corrected Multivariate Means

Interaction

There is a significant Group * Population interaction. To find the pattern of that interaction we must compute the associated canonical variate, find the corrected cell means for that variate and compute an LSDmmd (for which we will need the MSerror).

We can compute the canonical variate for the interaction in the syntax window

compute int_cmv = (zperf * .715) + (zrate * -.274).

We obtain an ANCOVA with this as the DV and preperf as the covariate. The corrected means for the interaction from that analysis are shown below, along with the summary table. The effect tests shown in the summary table are meaningless, but the MS _{error} will be necessary.

3. POP * GROUP

Dependent	Variable [.]	INT	CMV
Dependent	vanabie.	11 1 1	

POP	GROUP	Mean	Std. Error
1.00	1.00	491 ^a	.141
	2.00	.124 ^a	.134
2.00	1.00	.192 ^a	.117
	2.00	.152 ^a	.160

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

•••••							
Dependent Variable: INT_CMV							
			Mean				
	Type III Sum		Squar				
Source	of Squares	df	е	F	Sig.		
Corrected Model	14.450 ^a	4	3.613	10.352	.000		
Intercept	3.499	1	3.499	10.027	.002		
PREPERF	3.180	1	3.180	9.114	.003		
POP	1.162	1	1.162	3.330	.072		
GROUP	.131	1	.131	.377	.541		
POP * GROUP	5.021	1	5.021	14.389	.000		
Error	26.521	76	.349				
Total	40.971	81					
Corrected Total	40.971	80					

Tests of Between-Subjects Effects

a. R Squared = .353 (Adjusted R Squared = .319)

To get the LSDmmd	$df_{error} = 75$	$MS_{error} = .349$	n = 81/4 = 20.5	LSDmmd = .369
-------------------	-------------------	---------------------	-----------------	---------------

Based on these values, the corrected pattern of the interaction is	For Pop 1	Group 1 < Group 2
	For Pop 2	Group 1 = Group 2

Remember that the canonical variate is dominated by perf, and so it makes sense that the corrected multivariate interaction pattern would correspond with the interaction pattern from the ANCOVA with perf as the DV (and preperf as the covariate).

So, our conclusion from the ANCOVA using perf as the DV and preperf as the covariate and from this MANCOVA converge to support that there is an interaction of group and population for performance. Importantly, the pattern of the interaction from the ANCOVA and MANCOVA are different from the interaction pattern revealed in the ANOVA with perf as the DV. Specifically, the simple effect of group found in population 2 in that ANOVA seems to be "spurious" and to have been produced by the initial nonequivalence for preperf between these cells. When this initial non-equivalence is "corrected for" using the ANCOVA and MANCOVA we see a different and presumably more descriptive interaction pattern.

Please note: The process shown here of using ANCOVA with the canonical variate does not give exact values of the corrected mean pattern or of the MSerror. I know of no way to get exact computations of these values from SPSS - but this approach provides a useful approximation.

Group Main Effect

There is a significant Group main effect. To find the pattern of that effect we must compute the associated canonical variate and find the corrected marginal means for that variate.

We can compute the canonical variate for the interaction in the syntax window

compute grp_cmv = (zperf * .478) + (zrate * .460).

We obtain an ANCOVA with this as the DV and preperf as the covariate. The corrected marginal means from that analysis are shown below.

2.	G	RO	U	Ρ

Dependen	t Variable:	GRP_	_CMV

GROUP	Mean	Std. Error
1.00	098 ^a	.016
2.00	.067 ^a	.019

Based on these values, the corrected pattern of the Group main effect is Group 1 < Group 2

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

Remember that the canonical variate for this main effect is a nearly equal combination of perf and rate. Both of these DVs had nonsignificant corrected effects in the same direction (see the ANCOVAs of each with preperf as the covariate) and so this seems to be a case of "multivariate power," in which the DVs without significant univariate differences combine to reveal a multivariate effect.

Population Main Effect

There is a significant Population main effect. To find the pattern of that effect we must compute the associated canonical variate and find the corrected marginal means for that variate.

We can compute the canonical variate for the interaction in the syntax window

```
compute pop_cmv = (zperf * .788) + (zrate * .747).
```

We obtain an ANCOVA with this as the DV and preperf as the covariate. The corrected marginal means from that analysis are shown below.

1. POP

Dependent Variable: POP_MV

POP	Mean	Std. Error
1.00	325 ^a	.029
2.00	.262 ^a	.028

Based on these values, the corrected pattern of the Population main effect is Pop 1 < Pop 2

a. Covariates appearing in the model are evaluated at the following values: PREPERF = 25.8899.

Remember that the canonical variate for this main effect is a nearly equal combination of perf and rate. Both of these had significant corrected effects in the same direction (see the ANCOVAs of each with preperf as the covariate) and so it makes sense that the corrected multivariate pattern would correspond with the patterns from the ANCOVAs of each DV when preperf was the covariate.

Please note: The process shown here of using ANCOVA with the canonical variate does not give exact values of the corrected mean pattern. I know of no way to get exact computations of these values from SPSS - but this approach provides a useful approximation.