Quiz #3 Demonstration of Statistical Modeling with ldf and MANOVA

dscriminant groups = method(1,3)		
/variables = qzs el e2 fin		
/statistics = 1 6 7 13		
<pre>/method = wilks</pre>	 determines selection method 	
/pin = .05.	← sets the inclusion criterion	

Statistical modeling with ldf is a 2-step process:

Step 1 – determine the subset of variables that will provide maximum discrimination among the groups Step 2 – perform a "regular" ldf with that subset, to determine diffuse vs. concentrated structure, optimal weightings, performance of the model, etc.

Step 1 - determining the subset of variables to be included

-- Idf uses the same "logic" as forward stepwise multiple regresssion

	Var	iables not in	n the analysi	ls after step 0 -	
Variable	Tolerance	Tolerance F	to enter	Wilks' Lambda	
075	1 0000000	1 0000000	2751	95573	←F1_F2 & Fin are all "viable predictors"
<u>5</u> 1	1 0000000	1 0000000	0000	60293	← best single discriminator will be the
E1	1 0000000	1.0000000	.0000	79042	first variable to enter the model
EZ ETN	1 0000000	1 0000000	.0009	68153	
F III	1.0000000	1.0000000	.0000	.00155	
At step	1, E1	was include	ed in the ana	alysis.	
			Degrees of	Freedom Signif.	
Wilks' La	.mbda	.60293	1 2	57.0	
Equivalen	it F	18.7689	2	57.0 .0000	
	Var	iables in the	e analysis af	ter step 1	
Variable	Tolerance	F to remove	_	_	
El	1.0000000	18.769			
	Var	iables not ir	the analysi	s after step 1 -	
	Var	Minimum S	Signif. of	ib ditter beep i	
Variable	Tolerance	Tolerance H	to enter	Wilks' Lambda	
E2	.6960419	.6960419	.2508	.57387 🗲	e2 won't contribute if added
FIN	.6838990	.6838990	.0211	.52533 🗲	 fin would contribute if added
QZS	.6442234	.6442234	.0002	.44398	best variable to add to model
At step	2, QZS	was includ	led in the ar	halysis.	
			Degrees of	Freedom Signif.	
Wilks' La	mbda	.44398	1 3	56.0	
Equivalen	lt F	23.0099	3	56.0 .0000	
	Var	iables in the	analysis af	ter step 2	
Variable	Tolerance	F to remove	1		
E1	.62254	12.332			
QZS	.58874	14.233			
	Var	iables not ir	n the analysi	ls after step 2 -	
	Var	Minimum S	Signif. of	LE COL SCOF L	
Variable	Tolerance	Tolerance H	f to enter	Wilks' Lambda	
E2	.5965419	.5965419	.3444	.65387 🗲	e2 won't contribute if added
FIN	.6344439	.6344439	.0211	.33254 🗲	 fin would contribute if added

Remember, this is a "stepwise" process, so the continued contribution of each variable to the model is reassessed after each new variable is added. Any variable that does not continue to contribute to the model is dropped (same as in forward stepwise multiple regression)

SPSS prints a nice summary of the stepwise modeling process

			Summary Table					
	Action	Vars	Wilks'					
Step	Entered Removed	In	Lambda	Sig.	Label			
1	E1	1	.60293	.0000				
2	QZS	2	.44398	.0000				
3	FIN	3	.38141	.0000				

Step 2 -- complete an ldf using just the selected subset of variables

			Canonical	D	iscri	minant	Functions		
	Pct of	Cum	Canonical	А	fter	Wilks'			
Fcn	Variance	Pct	Corr		Fcn	Lambda	Chisquare	DF	Sig
				:	0	.3814	53.978	6	.0000
1*	85.17	85.17	.7352	:	1	.8300	10.433	2	.0054
2*	14.83	100.00	.4123	:					
Standa Funct:	ardized Ca ion Coeff.	anonica icients	l Discrimi	na	nt	Stru	cture Matrix:		
							FUNC 1	FUN	C 2
	F	UNC 1	FUNC 2			E1	.73932*	.2	7642
QZS	-	.83826	.59783			E2	.53921*	.2	9542
E1	1	.23735	71023			FIN	.52162	. 8	4797*
FIN		.00348	1.12066			QZS	09948	.4	1155*

Notice that E2 is not in the model, but appears in the structure matrix !!! The variables in this model have been chosen to be "nonredundant". Having the structure weights for the variables that are and are not included in the model allows you to decide whether or not the variables excluded from this "optimal model" are an important part of a "complete description" of the relationships between group membership and these variables. In this case, E2 would certainly be considered part of complete description.

Example of MaxminF selection

```
dscriminant groups = method(1,3)
    /variables = qzs el e2 fin
    /statistics = 1 6 7 13
    /method = maxminf
    /pin = .05.
```

SPSS Output

	Summary Table								
	Action Vars			Wilks'					
Step	Entered	In	Lambda	Sig.	Minimum F	Sig.	Between	Groups	
1	E1	1	.60293	.0000	6.99654	.0105	2	3	
2	FIN	2	.52533	.0000	6.80555	.0023	1	2	
3	QZS	3	.38141	.0000	5.22672	.0030	2	3	

- E1 as entered in the first step, because it had the best overall F (same as in the Wilks, above.
- With E1 entered, the model does worst at discriming between groups 2 & 3, so on the next step the intent will be to add that variable that maximally increases the pairwise F for those two groups
- FIN is the variable that most helped to further discriminate between groups 2 & 3
- With E1 and FIN entered, the model does worst at discriminating between groups 1 & 2, so on the next step the intent will be to
 add that variable that maximally increases this pairwise F.
- QZS is the variable that helped to further discriminate between groups 1 & 2
- With E1, FIN and QZS added to the model the poorest pairwise discrimination is between groups 2 & 3
- But alas, there are no more variables that if added would contribute to the model (E2 doesn't make it into the model)
- Notice that for these data the Wilks and maxminf selected the same set of variables, but that the selection order differed.