Testing Research Hypotheses by Comparing Nested Models

The researcher wanted to test the hypothesis that students with internal versus external locus of control had scholastic performance differences beyond what could be accounted for by differences In motivation and self concept. Testing this hypothesis involved comparing a reduced model including self concept and motivation scores, with a full model that included these variables and also a set of five performance measures.

These data are from the TALENT data set. "External" and "internal" students are identified following the procedure offered in the manual.

compute ext_int = locus.
recode ext_int (lo thru -.25 = 0) (.25 thru hi = 1).

← categorizing based on IE score

The analysis was run using only those with 0 & 1 values !!

Use the "Save" window to have SPSS save the group membership predicted by each ldf model that you analyze.

Discriminant Analysis: Save	2
Predicted group membership	Continue
<u>D</u> iscriminant scores Probabilities of group membership	Cancel
 Probabilities of group membership 	Help
Export model information to XML file	
	Browse
1	

SPSS Output for the reduced model:

Eigenvalues					Wilks' Lambda						
Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation		Test of Fun	ction(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.314 ^a	100.0	100.0	.174		1	00.011(0)	.970	6.091	2	.048
a. First analy		iscriminant functi	ons were used ir	the							
Standar Discrim Coeffic	inant Fu			Structur	e Mat	rix:			Group C	entroids	8
	FU	NC 1				FUNC 1	L		Group	FUNC	! 1
CONCPT	•	40722		MOTV		.92492			0	1	5628
MOTV	•	77895		CONCPT		.68644			1	.1	.9891

Classi	fication Resul	lts -		
		No. of	Predicted	Group Membership
Act	ual Group	Cases	0	1
Group	0	97	52	45
			53.6%	46.4%
Group	1	88	36	52
			40.9%	59.1%
Ungrouped Cases				

Percent of "grouped" cases correctly classified: 56.22%

SPSS Output for the reduced model:

Eigenvalues				Eigenvalues Wilks' Lambda						
Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation		Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.140 ^a	100.0	100.0	.351		1	.877	25.551	2	.001
a. First analy			ions were used ir	·			.011	25.551	2	.00

Standardized Canonical Discriminant Function Coefficients

Structure Matrix:

	Function
efficients	

				G	roup Centroids
	FUNC 1		FUNC 1		
CONCPT	.23834	CIV	.80125	Group	FUNC 1
MOTV	.23353	RDG	.74319	0	33046
RDG	.53896	WRTG	.61795	1	.42058
WRTG	14275	SCI	.60704		
MATH	.07573	MOTV	.43742		
SCI	.00976	CONCPT	.32464		
CIV	.60538	MATH	.22648		

Classification Results -

Actual	Group	No. of Cases	Predicted 0	Group Membership 1
Group	0	97	64	33
			66.0%	34.0%
Group	1	88	30	58
			34.1%	65.9%
Ungrouped	Cases	15		

Percent of "grouped" cases correctly classified: 65.95%

The full model (65.95%) performed better than the reduced model (56.22%). Notice "how" the model got better -there was little improvement in the ability to correctly classify members of group 1, but there was substantial improvement in the ability to correctly classify members of group 0. This type of "asymmetry" is common and often important!

Comparing Two Nested Models

Model comparison is the simplest when: 1) there are two groups and 2) the models are nested. In that case, the three "summaries" of the model are nearly equivalent, the Chi-square test of sphericity, the R², and the % correct.

Comparing Nested Models using the Sphericity Test Information

The X² values are an index of the goodness-of-fit of each model, so we can compute the difference in the fit of the two models by looking at the difference between X² value used to test each. The difference between two X² values is a X² value, with df = the difference between the two dfs. Our research hypothesis is that the full model will fit the data better (have a larger X² because it is "less spherical") than will the reduced model.

 $X^{2}\Delta = X^{2}$ (from full model) - X^{2} (from reduced model) = 25.551 - 6.091 = 19.460

 $df\Delta = df$ (from full model) - df (from reduced model) = 7 - 2 = 5

Critical $X^2 - X^2(5, \alpha = .01) = 15.086$

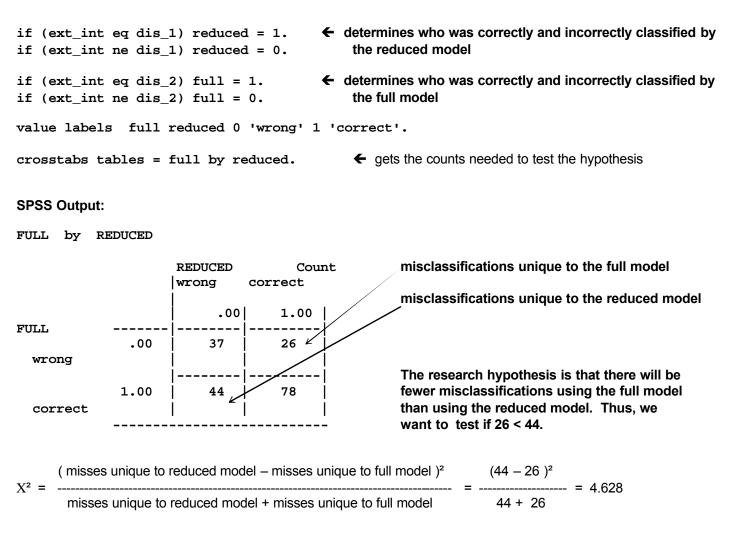
Since $X^2\Delta$ > Critical X^2 , we would conclude that the full model fit the data better than did the reduced model.

Comparing Nested Models using the R²

This test is the same as is used to test R² for multiple regression (and is also limited to comparing nested models -- although Hotelling's t-test can be used for non-nested models):

 $F\Delta = \frac{(.3509^{\circ} - .1745^{\circ}) / (.7 - 2.)}{(.1 - .3509^{\circ}) / .185 - .7 - 1} = 3.70$

F-critical = $F(5, 177, \alpha = .01) = 2.29$


Since $F_{\Delta} > F$ -critical, we would conclude that the full model accounts for more between group variation than does the reduced model

Comparing Nested Models using the % correct reclassification

If the full model is better than the reduced model then it should lead to better reclassification. Specifically, there should be fewer cases uniquely incorrectly reclassified by the full model than are uniquely incorrectly reclassified by the reduced model.

Remember that we asked SPSS to save the predicted group membership for each analysis. These will be saved as dis_1, dis_2, etc. – one for each analysis. For this example dis_1 holds the classifications for the reduced model (which we requested first) and dis_2 holds the classifications for the second.

We need to score each set of classifications against the correct group membership, so we know who was correctly and incorrectly reclassified by each model.

 X^2 -critical (1, .05) = 3.84

Since $X^2 > X^2$ -critical, we would conclude that the full model (65.59 % correct reclassification) yields better classification than does the reduced model including only motivation and self-concept (56.22 %).