PC Example

A community-based treatment center for adolescents with behavior disorders collects daily data for all residents, including the variables listed below. The question asked was, "How many different 'kinds' of information are we getting from these eight measures?" We decided to use data from the first full month in residence -- by then the "kids" have settled in and are "being themselves" but treatment effects are negligible.

Whether or not this occurred each day	Daily rating using 1-5 scale
physical aggression (pa2)	Sad (s2)
property damage (pd2)	anxious (ax2)
theft (t2)	self-confidence (sc2)
extreme verbal abuse patients/staff (va2)	compliance (co2)

Analyze → Data Reduction → Factor

12	Reactor Anali	ieie			X
	T deter Analy	10			
	🚸 subn	_	<u>V</u> ariables:		OK
	🚸 ssn		() pa2	_	Paste
	🗰 age		🗰 pd2		Lanc
	🚸 phyab		_ 🔶 t2		<u>R</u> eset
	🛞 sxabu		📔 🛞 va2		
	🏟 parsit	· · · · ·	" 🛞 s2		Cancel
	rimoff		🛞 ax2		Help
	🚸 suicatt		🚸 sc2		
	🚸 gender		🛞 cn2	<u> </u>	
	🛞 runaway		_ Selection Var	riable:	
	🚸 meds	• •			/aļue
	Descriptives	Extraction	Rotation	Scores	Options

Highlight and move the variables into the window...

Variables should be quantitative or binary

Then work your way through the different specifications to get the analysis and output you want.

We'll keep this first one simple...

Remember that you should do a careful "data screening" before factoring, checking for discontinuities, skewness, outliers, etc.

Be sure not to include...

- constants (i.e., need variance to have covariance)
- "elements & aggregates" (e.g., total, V, Q & A GRE)

Descriptives window

Basics now -- more later

Extraction window

- Lots of decisions to make here
- We'll start with "PC" factoring
- Notice you can determine the number of factors to be extracted

Rotation window

- The "bridge" between mathematical and interpretive aspects of factoring
- Varimax is probably the most commonly used

Factor Analysis: Ro	tation	×
Method None Varimax Direct Oblimin Delta:	C Quartimax C Equamax C Promax Kappa 4	Continue Cancel Help
Display Display Display <u>Botated solution</u> Maximum Iterations for	Loading plot(s)	_

Output (skipping univariates and correlation matrix to safe a bit space -- also the listing order is changed just a bit)

	Initial Eigenvalues			Extractio	Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	3.048	38.097	38.097	3.048	38.097	38.097	2.304	28.798	28.798	
2	1.709	21.363	59.459	1.709	21.363	59.459	2.093	26.163	54.961	
3	1.340	16.746	76.205	1.340	16.746	76.205	1.699	21.244	76.205	
4	.636	7.953	84.158							
5	.483	6.036	90.194							
6	.340	4.244	94.438							
7	.240	3.000	97.438							
8	.205	2.562	100.000							
Extraction Me	thod: Princip	al Component A	nalysis. <i>)</i>	l l)	1)	
		$\overline{}$			$\overline{}$					
		Initial Solutior	1		Extracted So	lution		Rotated Solu	ution	

Total Variance Explained

The initial solution has as many components (factors) as there are variables -- complete components solution --

- The eigenvalues (λ) and % variance are examined to determine the number of factors ($\% = \lambda/k$)
- The default (and probably most common rule) is the λ > 1.00 rule -- applied here we'd keep 3 factors which would account for 76.205% of the variance in the original 8 variables

The extracted solution has the chosen number of factors -- called a truncated components solution

Notice that it is a repeat of the information from the first however many factors are kept

The rotated solution is the extracted solution after "changing the viewing angle" to improve interpretability

- Notice that the total variance explained is the same
- Notice that there is some shifting in which factors explain how much variance

Component Matrix^a

	Component				
	1	2	3		
physical aggression	.758	.413	1.164E-03		
property damage	.693	.489	199		
theft	.362	.656	204		
extreme verbal abuse	.826	6.589E-02	.235		
sad	.540	510	.441		
anxious	.654	335	.507		
self-confidence	349	.539	.669		
compliance	580	.450	.551		

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

Rotated Component Matrix

		Component				
	1	2	3			
physical aggression	.807	.301	-6.51E-02			
property damage	.853	9.875E-02	148			
theft	.751	186	6.583E-02			
extreme verbal abuse	.562	.645	105			
sad	-8.06E-02	.846	155			
anxious	.110	.884	-5.44E-02			
self-confidence	3.339E-02	-2.60E-02	.927			
compliance	165	209	.879			

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

The unrotated Component Matrix usually isn't interpreted.

The communalities are the % variance of each variable that is accounted for by the solution. Sometimes low communalities suggest the utility of additional factors.

Communalities

	Initial	Extraction
physical aggression	1.000	.746
property damage	1.000	.759
theft	1.000	.603
extreme verbal abuse	1.000	.742
sad	1.000	.747
anxious	1.000	.797
self-confidence	1.000	.861
compliance	1.000	.843

Extraction Method: Principal Component Analysis

Factor "interpretation" focuses on the rotated solution.

The component matrix (often called the Structure Matrix) shows the correlation between each factor and each variable.

Factors are named or interpreted based upon the variables that "load on" or correlate with each. "Cutoffs" for identifying what variables load on which factors vary amazingly across disciplines, authors, and content areas -- .3 - .4 is "modal".

Factorings of this sort often reveal "internalizing" vs. "externalizing" factors. This solution was interestingly different.

- Factor 1 is probably an "externalizing" factor
- Factor 2 would be a "internalizing" factor, except for the loading by extreme verbal abuse -- which also loads on F1
 - That extreme verbal abuse loads on both factors suggests that this behavior is both tied to other forms of "acting out" and might also be a response to "negative internal states" (i.e., being sad and/or anxious)
- Factor 3 is compliance & self-confidence
 - Notice that these behaviors are separated from the others & include an "internalizing" & "externalizing"
 - Notice that these are both positively weighted -increases in one "go with" increases in the other

943 Another Factoring Example -- with matrix input

One nice thing about SPSS is that you can start a factor analysis with only the correlation matrix (you do not need the original data file). Articles often include the correlation matrix from a factoring (or other analyses), giving you a chance to "check-up on" or "extend" the published treatment of the data.

Inputting the Data

File→ New→ Syntax to open a "Syntax file"

	sina cor	r matrix	1 SPS	- SPSS	Sunta	ax Edit	nr			
File	Edit Vi	iew Ana	lyze G	raphs	Utilities	Run	Windo	ow Help		
-			າ 💻	1	- ? M		0			
ma	ıtrix data	a variab	les = ro	owtype	e_ sta sit	ature hi ht kne	ipht lo egrt el	wlengn armln Ibogrt wrstgrt		
/f	ormat =	lower n	odiagor	nal.						
be	gin data.				40 F					
	AN 67.3	3 34.4	33.5	27.6	49.5	15.3	12.4	8.6		
	0.4	4.5	b.5	4.5	4.5	1.3	1.2	.9		
	32U	320	320	320	320	320	320	320		
	NRR .02	70								
	RR 76	74 65								
Lõõ	RR 67	46 43	44							
l čč	RR .27	.16.22	26.26							
	RR .21	.11 .14	.25 .24	.59						
	RR .31	.19 .22	.34 .29	.57.5	6					
en	d data.									
										_
-						[🥊 SPS	SS Processor is	ready	

You will use these syntax commands verbatim -- only the variable names and the data values will change.

You need not have the mean and/or sd data to do this.

You will need to include the "N" of the sample in order to conduct significance tests (more later).

Notice that the correlation matrix includes only the lower offdiagonal values (without the 1.00's), so there are only 7 rows of correlations for the 8x8 correlation matrix.

Run → All to put these data into the SPSS Data Editor

🖩 Untitled - SPSS Data Editor											
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze <u>G</u> raph:	s <u>U</u> tilities <u>W</u>	indow <u>H</u> elp						
13: wrstgrt									-		
	rowtype_	varname_	stature	hipht	lowlengn	armIn	sitht	kneegrt	elbogrt	wrstgrt	va 📥
1	N		320.0000	320.0000	320.0000	320.0000	320.0000	320.0000	320.0000	320.0000	
2	MEAN		67.3000	34.4000	33.5000	27.6000	49.5000	15.3000	12.4000	8.6000	
3	STDDEV		6.4000	4.5000	6.5000	4.5000	4.5000	1.3000	1.2000	.9000	
4	CORR	STATURE	1.0000	.8200	.7400	.7600	.6700	.2700	.2100	.3100	
5	CORR	HIPHT	.8200	1.0000	.7200	.7400	.4600	.1600	.1100	.1900	
6	CORR	LOWLENG	.7400	.7200	1.0000	.6500	.4300	.2200	.1400	.2200	
7	CORR	ARMLN	.7600	.7400	.6500	1.0000	.4400	.2600	.2500	.3400	
8	CORR	SITHT	.6700	.4600	.4300	.4400	1.0000	.2600	.2400	.2900	
9	CORR	KNEEGRT	.2700	.1600	.2200	.2600	.2600	1.0000	.5900	.5700	
10	CORR	ELBOGRT	.2100	.1100	.1400	.2500	.2400	.5900	1.0000	.5800	
11	CORR	WRSTGRT	.3100	.1900	.2200	.3400	.2900	.5700	.5800	1.0000	
12											_
▲ 🕨 🔪 Da	ta View 🖉 🗸	ariable View 🦯				4					►
			S	PSS Processo	r is ready						14

If you use Analyze \rightarrow Data Reduction \rightarrow Factor... you'll get a factor analysis, **but not the right one!!!**

Instead you must add the following line to the syntax file and run it. factor matrix in(cor=*).

This command will get you a factoring with all the "defaults" (PC, $\lambda > 1$, Varimax, etc.). To get a full listing of the available syntax commands and their meanings go to...

 $\mathsf{Help} \rightarrow \mathsf{Topics} \rightarrow \mathsf{Statistical} \ \mathsf{Analysis} \rightarrow \mathsf{Data} \ \mathsf{Reduction} \rightarrow \mathsf{Factor} \ \mathsf{Analysis} \ \mathsf{procedure}$

 \rightarrow Syntax \rightarrow Factor Command Syntax (and click the "Display" button)

About the variables (all measured in inches)...

- stature -- standing height measured in inches
- hipht -- hip height measures in inches
- lowleng -- lower leg length (inseam)

armIn -- arm length shoulder to fingertips

sitht -- height when seated on a standard 18" chair

Considering the variables and the patterns in the correlation matrix, it is easy to expect that we will find 2 factors -- one including the 5 "length" measures and one including the 3 "girth" measures. Let's see...

					-				
		Initial Eigenvalu	Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadir				ed Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.033	50.413	50.413	4.033	50.413	50.413	3.572	44.653	44.653
2	1.776	22.195	72.608	1.776	22.195	72.608	2.236	27.955	72.608
3	.652	8.149	80.757						
4	.445	5.567	86.324						
5	.408	5.101	91.425						
6	.329	4.110	95.535						
7	.232	2.899	98.434						
8	.125	1.566	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix^a

	Component					
	1	2				
STATURE	.906	270				
HIPHT	.817	396				
LOWLENGN	.788	314				
ARMLN	.836	195				
SITHT	.688	-5.89E-02				
KNEEGRT	.502	.678				
ELBOGRT	.453	.730				
WRSTGRT	.541	.643				

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Communalities

	Initial	Extraction
STATURE	1.000	.894
HIPHT	1.000	.825
LOWLENGN	1.000	.720
ARMLN	1.000	.737
SITHT	1.000	.477
KNEEGRT	1.000	.711
ELBOGRT	1.000	.738
WRSTGRT	1.000	.707

Extraction Method: Principal Component Analysis.

Rotated Component Matrix

	Component			
	1	2		
STATURE	.930	.169		
HIPHT	.908	1.575E-02		
LOWLENGN	.845	7.589E-02		
ARMLN	.834	.204		
SITHT	.640	.258		
KNEEGRT	.141	.832		
ELBOGRT	7.456E-02	.856		
WRSTGRT	.193	.818		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

The 2 factors with $\lambda > 1.00$ accounted for 72.6% of the variance in the 8 variables.

The rotated solution shows that expected structure -- a "length" group factor and a "girth" group factor.

The communalities show that the variables are "well accounted for" except for sitting height. Possible explanation? The sample includes both men and women, which differ more on "back length" than any of the other variables. So, that variability might be harder to "account for" using the resulting factors.

Total Variance Explained

kneegrt -- distance around the upper knee elbogrt -- distance around the lower elbow

wrstgrt -- distance around the wrist

The language of factor interpretation:

Describing Each Factor

•

- One set of descriptive words has to do with how many variables comprise the factor
 - general factor - All or nearly all variables load
 - group factor -- Subset of variables load
 - unique factor -- Single item loads
 - undefined factor - "Not sure" what the factor "is" because of few or "odd" loadings
- Another set of descriptive words has to do with the "polarity" of the factor
 - Unipolar factor All variables that load on the factor have positive structure weights (loadings). Usually all the loading variables are positively correlated with the factor because they are positively correlated with each other
 - Bipolar factor - Some variables load with positive weights (e.g., < .40) while other variables load with negative weights (e.g., < .40). Usually the loading variables have a mixture of positive and negative correlations with the factor because they have a mixture of positive and negative correlations with each other.

Describing Variables

- univocal item -- variable that loads on only one factor
- multivocal item -- variable that loads on more than one factor

Practice with Factor Interpretation:

In a "second study" a few variables were added and the factoring re-done.

Factor	Matrix:
--------	---------

		FACTOR 1	FACTOR 2	FACTOR 3
STATURE	(standing height)	.92991	24829	.32467
BODYFAT	(% body fat)	.52453	31432	.64561
LOWLEGLN	(from knee to floor)	.74915	24610	.32413
WRSTGRT	(girth around waist)	.63449	.57476	21345
ARMLN	(arm length)	.80174	14265	01232
KNEEGRT	(girth around knee)	.75599	.59979	.21112
HIPHT	(from hip to floor)	.81381	35745	.21222
ELBOGRT	(girth around elbow)	.75446	.66015	.22312
WEIGHT	(body weight)	.53148	.32498	.51322
TONE	(index of fitness)	.16547	.12267	63671
SITHT	(sitting height)	.60619	01780	21368

Interpret this factor solution with a cutoff of .4 -- using the appropriate language form above.

Consider a cutoff .3 -- what factors "change" -- which cutoff do you like better? Why ?